참고
이 페이지는 `tutorials/noise/9_entanglement_verification.ipynb`__에서 생성되었다.
Run interactively in the IBM Quantum lab.
얽힘(Entanglement) 입증¶
GHZ 상태 소개¶
The Greenberger-Horne-Zeilinger (GHZ) 상태는 다음의 상태 벡터에 의해 가장 잘 정의된 \(n\)-큐비트가 얽힌 상태이다:
GHz 상태의 특성화는 대규모 양자 컴퓨터 개발의 핵심인 다중 양자 상호작용을 평가하는데 매우 유용하다.
양자 상태 특성화¶
Any mixed quantum state can be identified by a density matrix, defined as \(\rho = \sum_{i} p_i |\psi_{i} \rangle \langle \psi_{i}|\), where \(|\psi_{i} \rangle\) are the pure quantum states forming the mixture and \(0 < p_i \le 1\), \(\sum_{i} p_i = 1\) are the classical probabilities to be in state \(|\psi_{i} \rangle\). We denote the pure density matrix of an ideal GHZ State by \(\rho_{p} \equiv |{\rm GHZ} \rangle \langle {\rm GHZ}|\). We want to see how close this matrix is to the density matrix of a GHZ State as produced in an experiment, \(\rho_{T}\). One method to quantify this similarity is to calculate the fidelity between the states, \(F(\rho_{p},\rho_{T})\)
The aim of this tutorial is two-fold: we will explore ways in which we can characterize the GHZ state, and ways in which we can use Ignis’ error mitigation tools to increase readout fidelity, regardless of characterization method
더 자세히 보기 전에 기본 Qiskit 에서 필요한 모든 것을 가져오도록 하자.
[1]:
from qiskit import IBMQ, execute
from qiskit import Aer
from qiskit import QuantumRegister
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.providers.aer import noise
from qiskit import quantum_info
from qiskit import visualization
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
다음 두 함수는 Ignis로부터 도입된다. 첫 번째는 일반적인 에러 경감 기법을 위한 것이고, 두 번째는 양자 단층 촬영에 대한 것이다.
[2]:
from qiskit.ignis.mitigation.measurement import (complete_meas_cal, tensored_meas_cal,
CompleteMeasFitter, TensoredMeasFitter)
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
The following import from the entanglement
package contains information needed to create, parallelize and analyze GHZ State circuits
[3]:
from qiskit.ignis.verification.entanglement.parallelize import *
from qiskit.ignis.verification.entanglement.linear import *
from qiskit.ignis.verification.entanglement.analysis import Plotter
GHZ 상태 준비¶
먼저 GHZ 상태를 준비하는 방법을 먼저 살펴보자.
두 \(|0\rangle\) 큐비트 시스템이 있다고 가정 해 보자.
하다마르 게이트를 처음으로 적용한다: \(|0\rangle \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\). 이제 우리의 주는 다음과 같다.
Applying on this state a sequence of \(n-1\) CNOT gate between the \(n^{th}\) and \((n+1)^{th}\) qubits for \(n = 0 \ldots n-1\) leaves the \(n+1\) qubit at \(|0\rangle\) if the \(n^{th}\) is in \(|0\rangle\), and at \(|1\rangle\) if the \(n^{th}\) is in \(|1\rangle\), thus creating the GHZ State:
The following function creates this “linear” circuit that can measure the GHZ state:
[4]:
qn = 5 #creating a 5 qubit GHZ state
circ_simple = get_ghz_simple(qn,measure=True)
/home/computertreker/git/qiskit/qiskit-tutorial/release/lib/python3.9/site-packages/qiskit/ignis/verification/entanglement/linear.py:84: DeprecationWarning: The QuantumCircuit.__add__() method is being deprecated.Use the compose() method which is more flexible w.r.t circuit register compatibility.
circ = circ + meas
/home/computertreker/git/qiskit/qiskit-tutorial/release/lib/python3.9/site-packages/qiskit/circuit/quantumcircuit.py:869: DeprecationWarning: The QuantumCircuit.combine() method is being deprecated. Use the compose() method which is more flexible w.r.t circuit register compatibility.
return self.combine(rhs)
[5]:
circ_simple.draw(output='mpl')
[5]:


특성화, Part I¶
다중 양자 결맞음 (MQC)¶
Multiple Quantum Coherence (MQC) works by taking the preliminary preparation of an \(n\) qubit GHZ State, and rotating each of the qubit states around the z axis by a phase \(\phi\). After that, we apply a X gate, i.e., a \(\pi\) pulse around the x axis. Then, we apply the inverse of the operations we originally applied to get the GHZ state. In an ideal situation the final state is \(|\psi \rangle = \frac{|0 \rangle ^{\otimes n} + e^{i n \phi}|1 \rangle ^{\otimes n}}{\sqrt{2}}\). We can ideally observe the phase collected by projecting \(|\psi \rangle\) onto the state \(|0 \rangle ^{\otimes n}\). This technique is reminiscent of an echo sequence, and has been shown to substantially improve the fidelity during readout.
The function below creates a linear MQC circuit. As with every circuit from here on, you can change the full_measurement
argument to toggle between full measurement of all qubits or measurement of only the control qubit. Full measurement yields the most accurate results, but for more than 7 qubits, it is recommended to set it to false, and observe only the oscillations between the '0'
and '1'
states.
[6]:
circ_mqc = get_ghz_mqc_para(qn, full_measurement=True)
/home/computertreker/git/qiskit/qiskit-tutorial/release/lib/python3.9/site-packages/qiskit/ignis/verification/entanglement/linear.py:142: DeprecationWarning: The QuantumCircuit.__iadd__() method is being deprecated. Use the compose() (potentially with the inplace=True argument) and tensor() methods which are more flexible w.r.t circuit register compatibility.
circ += circinv
/home/computertreker/git/qiskit/qiskit-tutorial/release/lib/python3.9/site-packages/qiskit/circuit/quantumcircuit.py:876: DeprecationWarning: The QuantumCircuit.extend() method is being deprecated. Use the compose() (potentially with the inplace=True argument) and tensor() methods which are more flexible w.r.t circuit register compatibility.
return self.extend(rhs)
[7]:
circ_mqc[0].draw(output='mpl')
[7]:


After running experiments on this MQC circuit, we can pick a state to observe oscillations as we sweep \(\phi\) from \(0\) to \(2 \pi\). Our signal in theory should follow \(S(\phi) = \frac{1}{2}(1+\cos(n \phi))\). We then perform a Discrete Fourier Transform (DFT: \(I_{v}=(1/N)|\sum_{\phi}e^{iv\phi}S(\phi)\)) to extract the Fidelity of the state, defined by the bounds \(2\sqrt{I_{n}} \leq F \leq \sqrt{I_{0}/2}+ \sqrt{I_{n}}\); if desired, an actual value for the fidelity can be obtained: \(F = \frac{1}{2}(P_{00...0}+P_{11...1})+\sqrt{I_{n}})\) (arXiv:1905.05720).
패리티 진동(Parity Oscillations)¶
The next method we use to characterize the GHZ state is parity oscillations. After preparing a GHZ state, we apply a combination of rotations about the x and y axes to create various superposition states as a function of \(\phi\): \(U(\phi) = \otimes_{j}^{N} e^{i\frac{\pi}{4}(\cos(\phi)\sigma_{x}^{j}+\sin(\phi)\sigma_{y}^{j})}\). We then measure the expectation value \(\langle \otimes_{j}^{N} \sigma_{z}^{j} \rangle_{\phi}\) as a function of \(\phi\), which in theory should lead to parity oscillations between 1 and -1.
다음 함수는 위에서 주어진 MQC 회로와 같은 패리티 진동 (Parity Oscillation) 과 등가인 회로를 생성한다.
[8]:
circ_po = get_ghz_po_para(qn)
[9]:
circ_po[0].draw(output='mpl')
[9]:


We can obtain fidelity for parity oscillations \(S_{\phi}\) from \(F = \frac{1}{2}(P_{00...0}+P_{11...1}+C)\), where \(C\), the coherence is defined as \(2\sqrt{I_{n}}\), following the same convention for the DFT as with the MQC method.
단층촬영¶
단층 촬영은 많은 명목상 동일한 상태를 생성하고 상이한 염기에서 상태 인스턴스를 측정함으로써 밀도 매트릭스를 측정한다. GHZ 상태의 이상적인 결과는 텐서-생성물 기반의 4개의 코너에 있는 4개의 동일한 밀도 매트릭스 요소이며, 다른 모든 요소들이 소멸된다. 이러한 방법에 의해 충실도가 쉽게 계산될 수 있지만, 방법은 느리고 (n 에서 기하급수적인 수의 측정을 필요로 한다), n이 7보다 큰 경우에는 엄청나게 긴 시간이 걸린다. 그럼에도 불구하고, 이 메소드가 소수의 소수에 관련되어 있으므로 이 방법을 수행하는 방법을 아래에서 볼 수 있습니다.
병렬 처리 회로¶
The above “linear” circuits are good to perform simulations, but what do we do when we use real devices, where the system can have an arbitrary topology and various errors? We are specifically targeting real hardware here, not just Aer simulation. One technique to reduce real-hardware effects is to parallelize the CNOT gates and thus create a shorter-depth circuit. This can be hugely beneficial efficiency wise, and fidelity wise. The class BConfig
from the module parallelize
does exactly
this.
First we must configure the optimal backend we want to use. We will consider a simulation backend, 'ibmq_qasm_simulator'
, disguised as a real device, 'ibmq_16_melbourne'
by using a the mock backend 'FakeMelbourne'
[10]:
from qiskit.providers.aer import QasmSimulator
from qiskit.test.mock import FakeMelbourne
backend = QasmSimulator()
backend_hardware = FakeMelbourne()
Using the noise
module, we can now define a noise model from 'ibmq_16_melbourne'
to “assign” to 'ibmq_qasm_simulator'
.
[11]:
noise_model = noise.NoiseModel.from_backend(backend_hardware)
coupling_map = backend_hardware._configuration.coupling_map
basis_gates=noise_model.basis_gates
And there we have it. From now on, in the tutorial, when using a real device, not a simulation, just take out every mention and assignment of noise_model
and coupling_map
, and assign the real device to backend
. The simulator used from now on is no substitute for running a real device.
BConfig
lays the blueprint for creating parallelized circuits. Let us initialize an object taking in the real device we just defined, and name it protocirc
. All of our experiments will use it:
[12]:
protocirc = BConfig(backend_hardware)
에러 경감¶
Qiskit Ignis provides very accurate tools to take raw data and return calibrated data. This is done by getting the raw data, in the form of a vector \(v_{raw}\) and getting a calibration matrix \(A\). The output is then the solution to the optimization problem: \(argmin_{v_{cal}} ||Av_{cal}-v_{raw}||^{2}\)
실험 시간¶
예비 단계¶
The probabilities of measuring \(|0\rangle ^{\otimes n}\) and \(|1\rangle^{\otimes n}\) in the GHZ state are important in calculating fidelity. For this, we need to run the following test
표준 실행 매개변수를 정의하여 시작한다.
[13]:
shots = 1024 #numbers of shots in a given experiment
max_credits = 3 #number of credits
qn = 5 #number of qubits
zerocode = '0'*qn #will help us easily define the state |00...00>
onecode = '1'*qn #will help us easily define the state |11...11>
sweep = np.arange(0.,np.pi*2,np.pi/16) #standard list of phase values we will sweep
[14]:
circ_simple, qr, initial_layout = protocirc.get_ghz_simple(qn, True)
[15]:
print(initial_layout)
circ_simple.draw()
{Qubit(QuantumRegister(5, 'q'), 0): 1, Qubit(QuantumRegister(5, 'q'), 1): 2, Qubit(QuantumRegister(5, 'q'), 2): 0, Qubit(QuantumRegister(5, 'q'), 3): 3, Qubit(QuantumRegister(5, 'q'), 4): 13}
[15]:
░ ┌───┐ ░ ░ ░ ┌─┐ » q_0: ─────────────────░─┤ X ├─░─────────────────────────────░──░───────┤M├───» ┌─────────┐ ░ └─┬─┘ ░ ┌─────────┐┌───┐┌─────────┐ ░ ░ ┌─┐ └╥┘ » q_1: ┤ U2(0,π) ├──■───░───■───░─┤ U2(0,π) ├┤ X ├┤ U2(0,π) ├─░──░─┤M├────╫────» └─────────┘┌─┴─┐ ░ ░ └─────────┘└─┬─┘└─────────┘ ░ ░ └╥┘┌─┐ ║ » q_2: ───────────┤ X ├─░───■───░──────────────┼──────────────░──░──╫─┤M├─╫────» └───┘ ░ ┌─┴─┐ ░ │ ░ ░ ║ └╥┘ ║ ┌─┐» q_3: ─────────────────░─┤ X ├─░──────────────┼──────────────░──░──╫──╫──╫─┤M├» ░ └───┘ ░ │ ░ ░ ║ ║ ║ └╥┘» q_4: ────────────────────────────────────────┼────────────────────╫──╫──╫──╫─» │ ║ ║ ║ ║ » q_5: ────────────────────────────────────────┼────────────────────╫──╫──╫──╫─» │ ║ ║ ║ ║ » q_6: ────────────────────────────────────────┼────────────────────╫──╫──╫──╫─» │ ║ ║ ║ ║ » q_7: ────────────────────────────────────────┼────────────────────╫──╫──╫──╫─» │ ║ ║ ║ ║ » q_8: ────────────────────────────────────────┼────────────────────╫──╫──╫──╫─» │ ║ ║ ║ ║ » q_9: ────────────────────────────────────────┼────────────────────╫──╫──╫──╫─» │ ║ ║ ║ ║ » q_10: ────────────────────────────────────────┼────────────────────╫──╫──╫──╫─» │ ║ ║ ║ ║ » q_11: ────────────────────────────────────────┼────────────────────╫──╫──╫──╫─» │ ║ ║ ║ ║ » q_12: ────────────────────────────────────────┼────────────────────╫──╫──╫──╫─» ░ ░ ┌─────────┐ │ ┌─────────┐ ░ ░ ║ ║ ║ ║ » q_13: ─────────────────░───────░─┤ U2(0,π) ├──■──┤ U2(0,π) ├─░──░──╫──╫──╫──╫─» ░ ░ └─────────┘ └─────────┘ ░ ░ ║ ║ ║ ║ » c: 5/═════════════════════════════════════════════════════════════╩══╩══╩══╩═» 0 1 2 3 » « « q_0: ─── « « q_1: ─── « « q_2: ─── « « q_3: ─── « « q_4: ─── « « q_5: ─── « « q_6: ─── « « q_7: ─── « « q_8: ─── « « q_9: ─── « «q_10: ─── « «q_11: ─── « «q_12: ─── « ┌─┐ «q_13: ┤M├ « └╥┘ « c: 5/═╩═ « 4
[16]:
job_simple = execute(circ_simple, backend, shots=shots, max_credits=max_credits,noise_model=noise_model)
# job_simple = execute(circ_simple, backend, shots=shots, max_credits=max_credits,noise_model=noise_model, coupling_map=coupling_map, basis_gates=basis_gates)
job_monitor(job_simple)
result_simple = job_simple.result()
Job Status: job has successfully run
[17]:
P0 = (1/shots)*result_simple.get_counts()[zerocode]
P1 = (1/shots)*result_simple.get_counts()[onecode]
print('P(|00...0>) = ',P0)
print('P(|11...1>) = ',P1)
P(|00...0>) = 0.4140625
P(|11...1>) = 0.341796875
이제 오류 완화로 다음을 수행합니다.
[18]:
qr = QuantumRegister(qn)
qubit_list = range(qn)
meas_calibs_simple, state_labels_simple = complete_meas_cal(qubit_list=qubit_list, qr=qr, circlabel='mcal')
[19]:
job_simple_em = execute(meas_calibs_simple, backend=backend,
noise_model=noise_model)
job_monitor(job_simple_em)
meas_result = job_simple_em.result()
Job Status: job has successfully run
[20]:
meas_fitter = CompleteMeasFitter(meas_result,state_labels_simple,circlabel='mcal')
result_simple_em = meas_fitter.filter.apply(result_simple)
[21]:
result_simple_em.get_counts()[zerocode]*1/shots
[21]:
0.44859593996533753
[22]:
P0_m = (1/shots)*result_simple_em.get_counts()[zerocode]
P1_m = (1/shots)*result_simple_em.get_counts()[onecode]
print('P(|00...0>) error mitigated = ',P0_m)
print('P(|11...1>) error mitigated = ',P1_m)
P(|00...0>) error mitigated = 0.44859593996533753
P(|11...1>) error mitigated = 0.4868663698086132
나중에 정확함을 평가하기 위해 이러한 값을 사전에 부를 것이다.
[23]:
p_dict = {'P0': P0, 'P1': P1, 'P0_m': P0_m, 'P1_m':P1_m}
파트 1: MQC¶
We now retrieve a parallelized MQC circuit for the n qubit device
[24]:
shots = 1024 #numbers of shots in a given experiment
max_credits = 3 #number of credits
qn = 5 #number of qubits
zerocode = '0'*qn #will help us easily define the state |00...00>
sweep = np.arange(0.,np.pi*2,np.pi/16) #standard list of phase values we will sweep
[25]:
%%time
circ, theta,initial_layout = protocirc.get_ghz_mqc_para(qn)
circ_total_mqc = [circ.bind_parameters({theta:t}) for t in sweep]
CPU times: user 1.87 s, sys: 16.3 ms, total: 1.89 s
Wall time: 1.89 s
이제 MQC 실험을 실행한다.
[26]:
job_exp_mqc = execute(circ_total_mqc, backend, shots=shots, max_credits=max_credits,
noise_model=noise_model,coupling_map=coupling_map,basis_gates=basis_gates)
job_monitor(job_exp_mqc)
result_exp_mqc = job_exp_mqc.result()
Job Status: job has successfully run
Now we will plot the amount of counts measured for \(|0 \rangle ^{\otimes n}\) as a function of phase. It is important to note that when using a parametrized circuit like the one here, the method get_counts()
accepts an index and not a circuit. In any other type of experiment, get_counts()
accepts a circuit.
[27]:
zeros = [(1/shots)*result_exp_mqc.get_counts(a)[zerocode] if
zerocode in result_exp_mqc.get_counts(a) else 0 for a in range(len(sweep)) ] #notice the important difference with proto2; takes only the index, not the actual circuit
Plotter('mqc').sin_plotter(sweep,zeros)

Now we get started on error mitigation. We create an identical quantum register and use complete_meas_cal from Ignis, to create circuits for calibrated measurements to be executed, and a calibration matrix.
[28]:
qr = QuantumRegister(qn)
qubit_list = range(qn)
meas_calibs_mqc, state_labels_mqc = complete_meas_cal(qubit_list=qubit_list, qr=qr, circlabel='mcal') #from Ignis
[29]:
job_cal_mqc = execute(meas_calibs_mqc, backend=backend,
noise_model=noise_model,coupling_map=coupling_map,basis_gates=basis_gates)
job_monitor(job_cal_mqc)
meas_result_mqc = job_cal_mqc.result()
Job Status: job has successfully run
[30]:
meas_fitter_mqc = CompleteMeasFitter(meas_result_mqc,state_labels_mqc,circlabel='mcal')
# print(meas_fitter.cal_matrix) #uncomment this to see how close the calibration matrix is to the calibration matrix
Finally, we have our error mitigated results:
[31]:
result_exp_em = meas_fitter_mqc.filter.apply(result_exp_mqc)
We can see how the error mitigated results yield a far greater fidelity than the raw data
[32]:
zeros_m = [(1/shots)*result_exp_em.get_counts(a)[zerocode] if
zerocode in result_exp_em.get_counts(a) else 0 for a in range(len(sweep)) ]
Plotter('mqc').sin_plotter(sweep,zeros,zeros_m)

[33]:
Plotter('mqc').get_fourier_info(qn,sweep,zeros,zeros_m,p_dict)
Upper/Lower raw fidelity bounds = 0.857 +/- 0.009 || 0.803 +/- 0.008
Upper/Lower error mitigated fidelity bounds = 0.886 +/- 0.009 || 0.852 +/- 0.009
Raw fidelity = 0.869 +/- 0.009
Mitigated fidelity = 0.894 +/- 0.009
[33]:
{'I0': (0.41552734375+0j),
'In': (0.16123040795800753+7.8682083452691e-05j),
'I0_m': (0.42314560290747766+0j),
'In_m': (0.18167459335619435+6.189882002559724e-05j),
'LB': 0.8030701766516697,
'UB': 0.857346092882548,
'LB_m': 0.8524660788583848,
'UB_m': 0.8862034748418814,
'F': 0.8692662432128102,
'F_m': 0.8939641943161678}

We now plot the DFT and compare the heights of the peaks to give bounds for the fidelity
Statistical bootstrapping has found that the error on these measurements is at most 1.5% (arXiv 1905.05720), so these result fall within error bounds, despite the fidelity being slightly higher than the upper bound, and show how error mitigation dramatically increases fidelity
파트 2: Parity Oscillation¶
We now retrieve a parallelized Parity Oscillation circuit for the n qubit device, and run experiments in the same fashion as we did in MQC.
[34]:
shots = 1024
max_credits = 3
qn = 5
zerocode = '0'*qn
sweep = np.arange(0,np.pi*2,np.pi/16)
[35]:
%%time
circ, [theta,thetaneg] , initial_layout = protocirc.get_ghz_po_para(qn)
circ_total = [circ.bind_parameters({theta:t, thetaneg:-t}) for t in sweep]
CPU times: user 2.06 s, sys: 10.5 ms, total: 2.07 s
Wall time: 2.07 s
[36]:
job_exp = execute(circ_total, backend, shots=shots, max_credits=max_credits,
noise_model=noise_model, coupling_map=coupling_map, basis_gates=basis_gates)
job_monitor(job_exp)
result_exp = job_exp.result()
Job Status: job has successfully run
Now we construct the \(\otimes _{j}^{N} \sigma_z^{j}\) matrix for instruction, although this is already taken into account in the following method, entanglement.analysis.composite_pauli_z_expvalue()
:
[37]:
composite_sigma_z = sigma_z = np.array([[1, 0],[0, -1]])
for a in range(1,qn):
composite_sigma_z = np.kron(composite_sigma_z,sigma_z)
Now we want to make sure that our list of counts is correctly ordered so that it coincides with the states of the \(\otimes _{j}^{N} \sigma_z^{j}\), so that calculating \(\langle \otimes _{j}^{N} \sigma_z^{j} \rangle\) will be as simple as taking the dot product of this ordered list with the diagonal of \(\otimes _{j}^{N} \sigma_z^{j}\). The composite_pauli_z_expvalue
function does just that; it takes a circuit and appropriately orders the state vector counts. We can plot this
dot product as a function of \(\phi\) to observe parity oscillations.
[38]:
from qiskit.ignis.verification.entanglement.analysis import composite_pauli_z_expvalue
[39]:
y = [ (1/shots)*composite_pauli_z_expvalue(result_exp.get_counts(i),qn) for i in range(len(sweep))]
[40]:
plt.plot(sweep,y)
Plotter('po').sin_plotter(sweep,y)

다음은 흔하게 볼 수 있는 에러 경감을 위한 것이다:
[41]:
qr = QuantumRegister(qn)
qubit_list = range(qn)
meas_calibs, state_labels = complete_meas_cal(qubit_list=qubit_list, qr=qr, circlabel='mcal')
[42]:
job_cal = execute(meas_calibs, backend=backend,
noise_model=noise_model, coupling_map=coupling_map, basis_gates=basis_gates)
job_monitor(job_cal)
meas_result = job_cal.result()
Job Status: job has successfully run
[43]:
meas_fitter = CompleteMeasFitter(meas_result,state_labels,circlabel='mcal')
result_exp_em = meas_fitter.filter.apply(result_exp)
[44]:
y_m = [ (1/shots)*composite_pauli_z_expvalue(result_exp_em.get_counts(i),qn) for i in range(len(sweep))]
[45]:
Plotter('po').sin_plotter(sweep,y,y_m)

We can see how error mitigation dramatically improves our measurement (much more so in PO than in MQC). Let us quantify this using the same DFT method we used in MQC, and calculating the actual fidelities:
[46]:
Plotter('po').get_fourier_info(qn,sweep,y,y_m,p_dict)
Raw fidelity = 0.641 +/- 0.006
Mitigated fidelity = 0.878 +/- 0.009
[46]:
{'In': (-0.26317275322394224-0.0069647879792624975j),
'In_m': (-0.4101495965078221-0.009319374887961387j),
'F': 0.6411945851051803,
'F_m': 0.8779866146481243}

As we see, the raw fidelity is much lower than what is achieved with MQC, but the error mitigated result is about the same.
Part 3: 단층 촬영¶
The first step in this experiment to just pass a simple GHZ state with no measurements. Also, the circuit cannot be transpiled; the transpiled
argument in the getGHZChecker()
method can be turned on and off as is shown
[47]:
shots = 1024
max_credits = 3
qn = 5
zerocode = '0'*qn
q = QuantumRegister(qn, 'q')
[48]:
circ_total, initial_layout = protocirc.get_ghz_layout(qn,transpiled=False)
We now pass a simulated backend from Aer
to get theoretical statevector counts
[49]:
job_exp = execute(circ_total, Aer.get_backend('statevector_simulator'), shots=shots, max_credits=max_credits)
job_monitor(job_exp)
result_exp = job_exp.result()
psi_exp = result_exp.get_statevector(circ_total)
Job Status: job has successfully run
This following code runs tomography experiments on the circuit we defined first, which is then compared to the theoretical statevector to generate a density matrix
[50]:
qst = state_tomography_circuits(circ_total,q)
job = execute(qst, backend, shots=shots, initial_layout=initial_layout,noise_model=noise_model, coupling_map=coupling_map, basis_gates=basis_gates)
job_monitor(job)
Job Status: job has successfully run
[51]:
tomo = StateTomographyFitter(job.result(), qst)
From here we can get the fidelity, although this method is not as fool proof as the one we will get to eventually:
[52]:
F = quantum_info.state_fidelity(psi_exp,tomo.fit(), validate=False)
… 이제 오류 완화를 위하여…
[53]:
qr = QuantumRegister(qn)
qubit_list = range(qn)
meas_calibs, state_labels = complete_meas_cal(qubit_list=qubit_list, qr=qr, circlabel='mcal')
[54]:
job_c = execute(meas_calibs, backend=backend,
noise_model=noise_model, coupling_map=coupling_map, basis_gates=basis_gates)
job_monitor(job_c)
meas_result = job_c.result()
Job Status: job has successfully run
[55]:
meas_fitter = CompleteMeasFitter(meas_result,state_labels,circlabel='mcal')
result_em = meas_fitter.filter.apply(job.result())
[56]:
result_em = meas_fitter.filter.apply(job.result())
tomo_em = StateTomographyFitter(result_em, qst)
Now, using qiskit.visualization
, we can plot the raw density matrix, real, and imaginary parts being on separate plots,…
[57]:
visualization.plot_state_city(tomo.fit(),"city")
[57]:


And also the error mitigated density matrix,…
[58]:
visualization.plot_state_city(tomo_em.fit(),"city")
[58]:


The actual density matrices can be obtained using the fit()
method. Once we have the density matrix, we can compute the fidelity, which is nothing but half the sum of the four corners of the density matrix; the following method helps us:
[59]:
from qiskit.ignis.verification.entanglement.analysis import rho_to_fidelity
[60]:
rho, rho_em = tomo.fit() , tomo_em.fit()
[61]:
F = rho_to_fidelity(rho)
F_em = rho_to_fidelity(rho_em)
[62]:
print("Raw fidelity: ",F)
print("Error mitigated fidelity: ",F_em)
Raw fidelity: 0.6368794947513089
Error mitigated fidelity: 0.8897132713838496
As we see, the raw fidelity is much lower than what is achieved with either MQC or Parity Oscillations, but the error mitigated result is about the same.
** 단층촬영에 대한 참고사항 * *
Do not perform quantum tomography with >5 qubits
결론¶
In conclusion, we see that without error mitigation, MQC is the superior method for characterizing the GHZ state. However, with error mitigation, all methods can, at least for a small number of qubits, achieve a much greater fidelity, and all near the same value. To get more accurate results, aside from using a real device, it is worth increasing the number of shots four to eight-fold. It may be worth comparing how the parallelized circuits used in this notebook perform fidelity-wise versus linearized circuits.
외부 협력자¶
Rohith Karur
[63]:
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
Version Information
Qiskit Software | Version |
---|---|
Qiskit | 0.26.0 |
Terra | 0.17.3 |
Aer | 0.8.2 |
Ignis | 0.6.0 |
Aqua | 0.9.1 |
IBM Q Provider | 0.13.1 |
System information | |
Python | 3.9.4 (default, Apr 20 2021, 15:51:38) [GCC 10.2.0] |
OS | Linux |
CPUs | 32 |
Memory (Gb) | 125.71707916259766 |
Wed May 12 06:38:49 2021 EDT |
This code is a part of Qiskit
© Copyright IBM 2017, 2021.
This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.