참고
This page was generated from tutorials/finance/11_time_series.ipynb.
Run interactively in the IBM Quantum lab.
Loading and Processing Stock-Market Time-Series Data¶
소개¶
Across many problems in finance, one starts with time series. Here, we showcase how to generate pseudo-random time-series, download actual stock-market time series from a number of common providers, and how to compute time-series similarity measures.
[1]:
%matplotlib inline
from qiskit.finance import QiskitFinanceError
from qiskit.finance.data_providers import *
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
import datetime
import matplotlib.pyplot as plt
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
[2]:
data = RandomDataProvider(tickers=["TICKER1", "TICKER2"],
start = datetime.datetime(2016, 1, 1),
end = datetime.datetime(2016, 1, 30),
seed = 1)
data.run()
Once the data are loaded, you can run a variety of algorithms on those to aggregate the data. Notably, you can compute the covariance matrix or a variant, which would consider alternative time-series similarity measures based on dynamic time warping (DTW). In DTW, changes that vary in speed, e.g., one stock’s price following another stock’s price with a small delay, can be accommodated.
[3]:
means = data.get_mean_vector()
print("Means:")
print(means)
rho = data.get_similarity_matrix()
print("A time-series similarity measure:")
print(rho)
plt.imshow(rho)
plt.show()
cov = data.get_covariance_matrix()
print("A covariance matrix:")
print(cov)
plt.imshow(cov)
plt.show()
Means:
[33.97683271 97.61130683]
A time-series similarity measure:
[[1.00000000e+00 5.41888011e-04]
[5.41888011e-04 1.00000000e+00]]

A covariance matrix:
[[2.08413157 0.20842107]
[0.20842107 1.99542187]]

If you wish, you can look into the underlying pseudo-random time-series using. Please note that the private class members (starting with underscore) may change in future releases of Qiskit.
[4]:
print("The underlying evolution of stock prices:")
for (cnt, s) in enumerate(data._tickers):
plt.plot(data._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
for (cnt, s) in enumerate(data._tickers):
print(s)
print(data._data[cnt])
The underlying evolution of stock prices:

TICKER1
[33.345584192064784, 34.167202335565946, 34.49763941174933, 33.19448218014497, 34.099838046818086, 34.5462126191821, 34.009259383821814, 34.59037748801817, 34.95494988420424, 35.24908238085977, 35.27750462217556, 35.82421760878801, 35.08776352178634, 34.92485357379329, 34.442734261113316, 35.04158047374794, 35.0813025812296, 34.78884583026451, 34.00693736790767, 33.7497451272888, 33.757887307807145, 33.48228440250777, 34.77634821690598, 35.783072532211776, 33.07191005324581, 31.182896807278134, 31.008124715222973, 30.585934303646617, 30.799577301145227]
TICKER2
[96.8774156647853, 98.99525441983634, 97.88323365714406, 97.50562865001707, 99.5484002575094, 100.19510325371124, 100.85816662608751, 100.34416025440004, 98.69608508354439, 98.86354982776713, 98.97256391558868, 97.7452118613441, 97.06198519956354, 96.98994151983632, 96.04518989677554, 95.94691992892332, 96.04240295639278, 96.07798919344826, 95.57169753513395, 96.16544560691977, 97.0566125612021, 97.37746086576867, 96.55923063837835, 97.29088292216379, 96.78944290369674, 97.66860352198472, 96.59681610510728, 97.51128330823606, 97.49121985362058]
명확히 티커의 수와 이름 및 날짜 범위를 조정할 수 있습니다.
[5]:
data = RandomDataProvider(tickers=["CompanyA", "CompanyB", "CompanyC"],
start = datetime.datetime(2015, 1, 1),
end = datetime.datetime(2016, 1, 30),
seed = 1)
data.run()
for (cnt, s) in enumerate(data._tickers):
plt.plot(data._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()

닫는 가격에 대한 액세스-시리즈¶
실시간 데이터에 대한 액세스는 일반적으로 지불을 필요로 하지만, Wikipedia와 Quand1 무료로 마감 가격에 액세스할 수 있다: https://www.quandl.com/?modal=register에 등록한 후에는 실제 나스닥 문제의 실제적인 스티커와 Quand1 에서 얻는 액세스 토큰을 지정해야 한다. 공분산 및 시계열 행렬의 계산에는 최소한 두 개의 티커가 필요하지만, 수백 개의 티커는 Quand1의 공정한 사용 한계를 넘어설 수 있다.
[6]:
stocks = ["GOOG", "AAPL"]
token = "REPLACE-ME"
if token != "REPLACE-ME":
try:
wiki = WikipediaDataProvider(
token = token,
tickers = stocks,
start = datetime.datetime(2016,1,1),
end = datetime.datetime(2016,1,30))
wiki.run()
except QiskitFinanceError as ex:
print(ex)
print("Error retrieving data.")
데이터가 로드되면 공분산 행렬 또는 DTW 변형을 다시 계산할 수 있습니다.
[7]:
if token != "REPLACE-ME":
if wiki._data:
if wiki._n <= 1:
print("Not enough wiki data to plot covariance or time-series similarity. Please use at least two tickers.")
else:
rho = wiki.get_similarity_matrix()
print("A time-series similarity measure:")
print(rho)
plt.imshow(rho)
plt.show()
cov = wiki.get_covariance_matrix()
print("A covariance matrix:")
print(cov)
plt.imshow(cov)
plt.show()
else:
print('No wiki data loaded.')
원하는 경우 다음을 사용하여 기본 시간 시리즈를 조사할 수 있습니다.
[8]:
if token != "REPLACE-ME":
if wiki._data:
print("The underlying evolution of stock prices:")
for (cnt, s) in enumerate(stocks):
plt.plot(wiki._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
for (cnt, s) in enumerate(stocks):
print(s)
print(wiki._data[cnt])
else:
print('No wiki data loaded.')
[Optional] 설정 토큰을 설정하여 최신의 세분화된 시간-시리즈¶
전문 데이터를 다운로드하려면 주요 제공자 중 하나를 사용하여 토큰을 설정해야 합니다. 이제 나스닥 및 NYSE 문제에 대한 데이터를 조정하고, 가격을 조정하고 매일 조정하는 가격, 나스닥 및 NYSE 문제에 대한 조정과 같은 집계를 제공할 수 있는 나스닥 데이터의 데이터를 설명합니다.
If you don’t have NASDAQ Data on Demand license, you can contact NASDAQ (cf. https://business.nasdaq.com/intel/GIS/Nasdaq-Data-on-Demand.html) to obtain a trial or paid license.
If and when you have access to NASDAQ Data on Demand using your own token, you should replace REPLACE-ME below with the token. To assure the security of the connection, you should also have your own means of validating NASDAQ’s certificates. The DataOnDemandProvider constructor has an optional argument verify
, which can be None
or a string or a boolean. If it is None
, certify certificates will be used (default). If verify is a string, it should be pointing to a certificate for the
HTTPS connection to NASDAQ (dataondemand.nasdaq.com), either in the form of a CA_BUNDLE file or a directory wherein to look.
[9]:
token = "REPLACE-ME"
if token != "REPLACE-ME":
try:
nasdaq = DataOnDemandProvider(token = token,
tickers = ["GOOG", "AAPL"],
start = datetime.datetime(2016,1,1),
end = datetime.datetime(2016,1,2))
nasdaq.run()
for (cnt, s) in enumerate(nasdaq._tickers):
plt.plot(nasdaq._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
except QiskitFinanceError as ex:
print(ex)
print("Error retrieving data.")
주식 시장 데이터의 또 다른 주요 공급업체인 EDI (Exchange Data International) 는 아프리카, 아시아, 극동, 라틴 아메리카, 중동, 그리고 더 설정된 것들 뿐만 아니라 아프리카, 아시아, 극동, 라틴 아메리카, 중동과 같은 100개 이상의 신흥 시장을 조회하는 데 사용될 수 있는 API를 사용할 수 있습니다. 예를 들어#exchangehttps://www.exchange-data.com/pricing-data/adjusted-prices.php 전체에 대한 개요를 볼 수 있다.
액세스를 다시 요청하려면 아래에 있는 REPLACE를 대체할 유효한 액세스 토큰이 필요합니다. 이 토큰은 다음과 같이 시험 또는 지불 방식으로 얻을 수 있다: https://www.quandl.com/
[10]:
token = "REPLACE-ME"
if token != "REPLACE-ME":
try:
lse = ExchangeDataProvider(token = token,
tickers = ["AEO", "ABBY", "ADIG", "ABF",
"AEP", "AAL", "AGK", "AFN", "AAS", "AEFS"],
stockmarket = StockMarket.LONDON,
start=datetime.datetime(2018, 1, 1),
end=datetime.datetime(2018, 12, 31))
lse.run()
for (cnt, s) in enumerate(lse._tickers):
plt.plot(lse._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
except QiskitFinanceError as ex:
print(ex)
print("Error retrieving data.")
또한 야후의 금융 데이터에 액세스할 수 있는 서비스를 제공하지 않아도 된다. 금융.
[11]:
try:
data = YahooDataProvider(
tickers = ["AEO", "ABBY", "AEP", "AAL", "AFN"],
start=datetime.datetime(2018, 1, 1),
end=datetime.datetime(2018, 12, 31))
data.run()
for (cnt, s) in enumerate(data._tickers):
plt.plot(data._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
except QiskitFinanceError as ex:
data = None
print(ex)

For the actual use of the data, please see the portfolio_optimization or portfolio_diversification notebooks.
[12]:
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
Version Information
Qiskit Software | Version |
---|---|
Qiskit | None |
Terra | 0.15.1 |
Aer | 0.6.1 |
Ignis | 0.4.0 |
Aqua | 0.7.5 |
IBM Q Provider | 0.8.0 |
System information | |
Python | 3.7.4 (default, Aug 13 2019, 15:17:50) [Clang 4.0.1 (tags/RELEASE_401/final)] |
OS | Darwin |
CPUs | 2 |
Memory (Gb) | 12.0 |
Wed Aug 12 13:20:52 2020 EDT |
This code is a part of Qiskit
© Copyright IBM 2017, 2020.
This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.
[ ]: