qiskit.ignis.mitigation.TensoredExpvalMeasMitigator¶
-
class
TensoredExpvalMeasMitigator
(amats)[소스]¶ 1-qubit tensor product measurement error mitigator.
This class can be used with the
qiskit.ignis.mitigation.expectation_value()
function to apply measurement error mitigation of local single-qubit measurement errors. Expectation values can also be computed directly using theexpectation_value()
method.For measurement mitigation to be applied the mitigator should be calibrated using the
qiskit.ignis.mitigation.expval_meas_mitigator_circuits()
function andqiskit.ignis.mitigation.ExpvalMeasMitigatorFitter
class with the'tensored'
mitigation method.Initialize a TensorMeasurementMitigator
- 매개변수
amats (
List
[ndarray
]) – list of single-qubit readout error assignment matrices.
-
__init__
(amats)[소스]¶ Initialize a TensorMeasurementMitigator
- 매개변수
amats (
List
[ndarray
]) – list of single-qubit readout error assignment matrices.
Methods
__init__
(amats)Initialize a TensorMeasurementMitigator
assignment_fidelity
([qubits])Return the measurement assignment fidelity on the specified qubits.
assignment_matrix
([qubits])Return the measurement assignment matrix for specified qubits.
expectation_value
(counts[, diagonal, …])Compute the mitigated expectation value of a diagonal observable.
mitigation_matrix
([qubits])Return the measurement mitigation matrix for the specified qubits.
mitigation_overhead
([qubits])Return the mitigation overhead for expectation value estimation.
plot_assignment_matrix
([qubits, ax])Matrix plot of the readout error assignment matrix.
plot_mitigation_matrix
([qubits, ax])Matrix plot of the readout error mitigation matrix.
required_shots
(delta[, qubits])Return the number of shots required for expectation value estimation.
stddev_upper_bound
([shots, qubits])Return an upper bound on standard deviation of expval estimator.
-
assignment_fidelity
(qubits=None)[소스]¶ Return the measurement assignment fidelity on the specified qubits.
The assignment fidelity on N-qubits is defined as \(\sum_{x\in\{0, 1\}^n} P(x|x) / 2^n\), where \(P(x|x) = \rangle x|A|x\langle\), and \(A\) is the
assignment_matrix()
.- 매개변수
qubits (
Optional
[List
[int
]]) – Optional, qubits being measured for operator expval.- 반환값
the assignment fidelity.
- 반환 형식
float
-
assignment_matrix
(qubits=None)[소스]¶ Return the measurement assignment matrix for specified qubits.
The assignment matrix is the stochastic matrix \(A\) which assigns a noisy measurement probability distribution to an ideal input measurement distribution: \(P(i|j) = \langle i | A | j \rangle\).
- 매개변수
qubits (
Optional
[List
[int
]]) – Optional, qubits being measured for operator expval.- 반환값
the assignment matrix A.
- 반환 형식
np.ndarray
-
expectation_value
(counts, diagonal=None, qubits=None, clbits=None)[소스]¶ Compute the mitigated expectation value of a diagonal observable.
This computes the mitigated estimator of \(\langle O \rangle = \mbox{Tr}[\rho. O]\) of a diagonal observable \(O = \sum_{x\in\{0, 1\}^n} O(x)|x\rangle\!\langle x|\).
- 매개변수
counts (
Dict
) – counts objectdiagonal (
Optional
[ndarray
]) – Optional, the vector of diagonal values for summing the expectation value. IfNone
the the default value is \([1, -1]^\otimes n\).qubits (
Optional
[List
[int
]]) – Optional, the measured physical qubits the count bitstrings correspond to. If None qubits are assumed to be \([0, ..., n-1]\).clbits (
Optional
[List
[int
]]) – Optional, if not None marginalize counts to the specified bits.
- 반환값
the expectation value and standard deviation.
- 반환 형식
(float, float)
- Additional Information:
The diagonal observable \(O\) is input using the
diagonal
kwarg as a list or Numpy array \([O(0), ..., O(2^n -1)]\). If no diagonal is specified the diagonal of the Pauli operator :math`O = mbox{diag}(Z^{otimes n}) = [1, -1]^{otimes n}` is used.The
clbits
kwarg is used to marginalize the input counts dictionary over the specified bit-values, and thequbits
kwarg is used to specify which physical qubits these bit-values correspond to ascircuit.measure(qubits, clbits)
.
-
mitigation_matrix
(qubits=None)[소스]¶ Return the measurement mitigation matrix for the specified qubits.
The mitigation matrix \(A^{-1}\) is defined as the inverse of the
assignment_matrix()
\(A\).- 매개변수
qubits (
Optional
[List
[int
]]) – Optional, qubits being measured for operator expval.- 반환값
the measurement error mitigation matrix \(A^{-1}\).
- 반환 형식
np.ndarray
-
mitigation_overhead
(qubits=None)¶ Return the mitigation overhead for expectation value estimation.
This is the multiplicative factor of extra shots required for estimating a mitigated expectation value with the same accuracy as an unmitigated expectation value.
- 매개변수
qubits (
Optional
[List
[int
]]) – Optional, qubits being measured for operator expval.- 반환값
the mitigation overhead factor.
- 반환 형식
int
-
plot_assignment_matrix
(qubits=None, ax=None)¶ Matrix plot of the readout error assignment matrix.
- 매개변수
qubits (list(int)) – Optional, qubits being measured for operator expval.
ax (axes) – Optional. Axes object to add plot to.
- 반환값
the figure axes object.
- 반환 형식
plt.axes
- 예외
ImportError – if matplotlib is not installed.
-
plot_mitigation_matrix
(qubits=None, ax=None)¶ Matrix plot of the readout error mitigation matrix.
- 매개변수
qubits (list(int)) – Optional, qubits being measured for operator expval.
ax (plt.axes) – Optional. Axes object to add plot to.
- 반환값
the figure axes object.
- 반환 형식
plt.axes
- 예외
ImportError – if matplotlib is not installed.
-
required_shots
(delta, qubits=None)¶ Return the number of shots required for expectation value estimation.
This is the number of shots required so that \(|\langle O \rangle_{est} - \langle O \rangle_{true}| < \delta\) with high probability (at least 2/3) and is given by \(4\delta^2 \Gamma^2\) where \(\Gamma^2\) is the
mitigation_overhead()
.- 매개변수
delta (
float
) – Error tolerance for expectation value estimator.qubits (
Optional
[List
[int
]]) – Optional, qubits being measured for operator expval.
- 반환값
the required shots.
- 반환 형식
int
-
stddev_upper_bound
(shots=1, qubits=None)¶ Return an upper bound on standard deviation of expval estimator.
- 매개변수
shots (
int
) – Number of shots used for expectation value measurement.qubits (
Optional
[List
[int
]]) – qubits being measured for operator expval.
- 반환값
the standard deviation upper bound.
- 반환 형식
float