qiskit.aqua.algorithms.SklearnSVM¶
-
class
SklearnSVM
(training_dataset, test_dataset=None, datapoints=None, gamma=None, multiclass_extension=None)[ソース]¶ The Sklearn SVM algorithm (classical).
This scikit-learn based SVM algorithm uses a classical approach to experiment with feature map classification problems. See also the quantum classifier
QSVM
.Internally, this algorithm will run the binary classification or multiclass classification based on how many classes the data has. If the data has more than 2 classes then a multiclass_extension is required to be supplied. Aqua provides several
multiclass_extensions
.- パラメータ
training_dataset (
Dict
[str
,ndarray
]) – Training dataset.test_dataset (
Optional
[Dict
[str
,ndarray
]]) – Testing dataset.datapoints (
Optional
[ndarray
]) – Prediction dataset.gamma (
Optional
[int
]) – Used as input for sklearn rbf_kernel which is used internally. See sklearn.metrics.pairwise.rbf_kernel for more information about gamma.multiclass_extension (
Optional
[MulticlassExtension
]) – If number of classes is greater than 2 then a multiclass scheme must be supplied, in the form of a multiclass extension.
- 例外
AquaError – Multiclass extension not supplied when number of classes > 2
-
__init__
(training_dataset, test_dataset=None, datapoints=None, gamma=None, multiclass_extension=None)[ソース]¶ - パラメータ
training_dataset (
Dict
[str
,ndarray
]) – Training dataset.test_dataset (
Optional
[Dict
[str
,ndarray
]]) – Testing dataset.datapoints (
Optional
[ndarray
]) – Prediction dataset.gamma (
Optional
[int
]) –Used as input for sklearn rbf_kernel which is used internally. See sklearn.metrics.pairwise.rbf_kernel for more information about gamma.
multiclass_extension (
Optional
[MulticlassExtension
]) – If number of classes is greater than 2 then a multiclass scheme must be supplied, in the form of a multiclass extension.
- 例外
AquaError – Multiclass extension not supplied when number of classes > 2
Methods
__init__
(training_dataset[, test_dataset, …])- type training_dataset
Dict
[str
,ndarray
]
load_model
(file_path)Load a model from a file path.
predict
(data)Predict using the SVM
run
()Execute the classical algorithm.
save_model
(file_path)Save the model to a file path.
test
(data, labels)Test the SVM
train
(data, labels)Train the SVM
Attributes
returns class to label
returns label to class
Return a numpy random.
returns result
-
property
class_to_label
¶ returns class to label
-
property
label_to_class
¶ returns label to class
-
load_model
(file_path)[ソース]¶ Load a model from a file path.
- パラメータ
file_path (str) – the path of the saved model.
-
predict
(data)[ソース]¶ Predict using the SVM
- パラメータ
data (numpy.ndarray) – NxD array, where N is the number of data, D is the feature dimension.
- 戻り値
predicted labels, Nx1 array
- 戻り値の型
numpy.ndarray
-
property
random
¶ Return a numpy random.
-
property
ret
¶ returns result
-
run
()¶ Execute the classical algorithm.
- 戻り値
results of an algorithm.
- 戻り値の型
dict
-
save_model
(file_path)[ソース]¶ Save the model to a file path.
- パラメータ
file_path (str) – a path to save the model.