qiskit.aqua.algorithms.SklearnSVM¶
-
class
SklearnSVM
(training_dataset, test_dataset=None, datapoints=None, gamma=None, multiclass_extension=None)[소스]¶ The Sklearn SVM algorithm (classical).
This scikit-learn based SVM algorithm uses a classical approach to experiment with feature map classification problems. See also the quantum classifier
QSVM
.Internally, this algorithm will run the binary classification or multiclass classification based on how many classes the data has. If the data has more than 2 classes then a multiclass_extension is required to be supplied. Aqua provides several
multiclass_extensions
.- 매개변수
training_dataset (
Dict
[str
,ndarray
]) – Training dataset.test_dataset (
Optional
[Dict
[str
,ndarray
]]) – Testing dataset.datapoints (
Optional
[ndarray
]) – Prediction dataset.gamma (
Optional
[int
]) – Used as input for sklearn rbf_kernel which is used internally. See sklearn.metrics.pairwise.rbf_kernel for more information about gamma.multiclass_extension (
Optional
[MulticlassExtension
]) – If number of classes is greater than 2 then a multiclass scheme must be supplied, in the form of a multiclass extension.
- 예외
AquaError – Multiclass extension not supplied when number of classes > 2
-
__init__
(training_dataset, test_dataset=None, datapoints=None, gamma=None, multiclass_extension=None)[소스]¶ - 매개변수
training_dataset (
Dict
[str
,ndarray
]) – Training dataset.test_dataset (
Optional
[Dict
[str
,ndarray
]]) – Testing dataset.datapoints (
Optional
[ndarray
]) – Prediction dataset.gamma (
Optional
[int
]) –Used as input for sklearn rbf_kernel which is used internally. See sklearn.metrics.pairwise.rbf_kernel for more information about gamma.
multiclass_extension (
Optional
[MulticlassExtension
]) – If number of classes is greater than 2 then a multiclass scheme must be supplied, in the form of a multiclass extension.
- 예외
AquaError – Multiclass extension not supplied when number of classes > 2
Methods
__init__
(training_dataset[, test_dataset, …])- type training_dataset
Dict
[str
,ndarray
]
load_model
(file_path)Load a model from a file path.
predict
(data)Predict using the SVM
run
()Execute the classical algorithm.
save_model
(file_path)Save the model to a file path.
test
(data, labels)Test the SVM
train
(data, labels)Train the SVM
Attributes
returns class to label
returns label to class
Return a numpy random.
returns result
-
property
class_to_label
¶ returns class to label
-
property
label_to_class
¶ returns label to class
-
load_model
(file_path)[소스]¶ Load a model from a file path.
- 매개변수
file_path (str) – the path of the saved model.
-
predict
(data)[소스]¶ Predict using the SVM
- 매개변수
data (numpy.ndarray) – NxD array, where N is the number of data, D is the feature dimension.
- 반환값
predicted labels, Nx1 array
- 반환 형식
numpy.ndarray
-
property
random
¶ Return a numpy random.
-
property
ret
¶ returns result
-
run
()¶ Execute the classical algorithm.
- 반환값
results of an algorithm.
- 반환 형식
dict
-
save_model
(file_path)[소스]¶ Save the model to a file path.
- 매개변수
file_path (str) – a path to save the model.