qiskit.quantum_info.DensityMatrix¶
-
class
DensityMatrix
(data, dims=None)[código fonte]¶ DensityMatrix class
Initialize a density matrix object.
- Parâmetros
data (matrix_like or vector_like) – a density matrix or statevector. If a vector the density matrix is constructed as the projector of that vector.
dims (int or tuple or list) – Optional. The subsystem dimension of the state (See additional information).
- Levanta
QiskitError – if input data is not valid.
- Additional Information:
The
dims
kwarg can be None, an integer, or an iterable of integers.Iterable
– the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.Int
orNone
– the leading dimension of the input matrix specifies the total dimension of the density matrix. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.
-
__init__
(data, dims=None)[código fonte]¶ Initialize a density matrix object.
- Parâmetros
data (matrix_like or vector_like) – a density matrix or statevector. If a vector the density matrix is constructed as the projector of that vector.
dims (int or tuple or list) – Optional. The subsystem dimension of the state (See additional information).
- Levanta
QiskitError – if input data is not valid.
- Additional Information:
The
dims
kwarg can be None, an integer, or an iterable of integers.Iterable
– the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.Int
orNone
– the leading dimension of the input matrix specifies the total dimension of the density matrix. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.
Methods
__init__
(data[, dims])Initialize a density matrix object.
add
(other)Return the linear combination self + other.
Return the conjugate of the density matrix.
copy
()Make a copy of current operator.
dims
([qargs])Return tuple of input dimension for specified subsystems.
evolve
(other[, qargs])Evolve a quantum state by an operator.
expand
(other)Return the tensor product state other ⊗ self.
expectation_value
(oper[, qargs])Compute the expectation value of an operator.
from_instruction
(instruction)Return the output density matrix of an instruction.
from_int
(i, dims)Return a computational basis state density matrix.
from_label
(label)Return a tensor product of Pauli X,Y,Z eigenstates.
is_valid
([atol, rtol])Return True if trace 1 and positive semidefinite.
measure
([qargs])Measure subsystems and return outcome and post-measure state.
multiply
(other)Return the scalar multipled state other * self.
probabilities
([qargs, decimals])Return the subsystem measurement probability vector.
probabilities_dict
([qargs, decimals])Return the subsystem measurement probability dictionary.
purity
()Return the purity of the quantum state.
reset
([qargs])Reset state or subsystems to the 0-state.
sample_counts
(shots[, qargs])Sample a dict of qubit measurement outcomes in the computational basis.
sample_memory
(shots[, qargs])Sample a list of qubit measurement outcomes in the computational basis.
seed
([value])Set the seed for the quantum state RNG.
set_atol
(value)Set the class default absolute tolerance parameter for float comparisons.
set_rtol
(value)Set the class default relative tolerance parameter for float comparisons.
subtract
(other)Return the linear operator self - other.
tensor
(other)Return the tensor product state self ⊗ other.
Returns the density matrix as a counts dict of probabilities.
to_dict
([decimals])Convert the density matrix to dictionary form.
Convert to Operator
to_statevector
([atol, rtol])Return a statevector from a pure density matrix.
trace
()Return the trace of the density matrix.
Attributes
The absolute tolerance parameter for float comparisons.
Return data.
Return total state dimension.
Return the number of qubits if a N-qubit state or None otherwise.
The relative tolerance parameter for float comparisons.
-
add
(other)¶ Return the linear combination self + other.
DEPRECATED: use
state + other
instead.- Parâmetros
other (QuantumState) – a quantum state object.
- Retorna
the linear combination self + other.
- Tipo de retorno
LinearOperator
- Levanta
QiskitError – if other is not a quantum state, or has incompatible dimensions.
-
property
atol
¶ The absolute tolerance parameter for float comparisons.
-
conjugate
()[código fonte]¶ Return the conjugate of the density matrix.
-
copy
()¶ Make a copy of current operator.
-
property
data
¶ Return data.
-
property
dim
¶ Return total state dimension.
-
dims
(qargs=None)¶ Return tuple of input dimension for specified subsystems.
-
evolve
(other, qargs=None)[código fonte]¶ Evolve a quantum state by an operator.
- Parâmetros
(Operator or QuantumChannel (other) – or Instruction or Circuit): The operator to evolve by.
qargs (list) – a list of QuantumState subsystem positions to apply the operator on.
- Retorna
the output quantum state.
- Tipo de retorno
QuantumState
- Levanta
QiskitError – if the operator dimension does not match the specified QuantumState subsystem dimensions.
-
expand
(other)[código fonte]¶ Return the tensor product state other ⊗ self.
- Parâmetros
other (DensityMatrix) – a quantum state object.
- Retorna
the tensor product state other ⊗ self.
- Tipo de retorno
- Levanta
QiskitError – if other is not a quantum state.
-
expectation_value
(oper, qargs=None)[código fonte]¶ Compute the expectation value of an operator.
- Parâmetros
oper (Operator) – an operator to evaluate expval.
qargs (None or list) – subsystems to apply the operator on.
- Retorna
the expectation value.
- Tipo de retorno
complex
-
classmethod
from_instruction
(instruction)[código fonte]¶ Return the output density matrix of an instruction.
The statevector is initialized in the state \(|{0,\ldots,0}\rangle\) of the same number of qubits as the input instruction or circuit, evolved by the input instruction, and the output statevector returned.
- Parâmetros
instruction (qiskit.circuit.Instruction or QuantumCircuit) – instruction or circuit
- Retorna
the final density matrix.
- Tipo de retorno
- Levanta
QiskitError – if the instruction contains invalid instructions for density matrix simulation.
-
static
from_int
(i, dims)[código fonte]¶ Return a computational basis state density matrix.
- Parâmetros
i (int) – the basis state element.
dims (int or tuple or list) – The subsystem dimensions of the statevector (See additional information).
- Retorna
The computational basis state \(|i\rangle\!\langle i|\).
- Tipo de retorno
- Additional Information:
The
dims
kwarg can be an integer or an iterable of integers.Iterable
– the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.Int
– the integer specifies the total dimension of the state. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.
-
classmethod
from_label
(label)[código fonte]¶ Return a tensor product of Pauli X,Y,Z eigenstates.
Table 16 Single-qubit state labels¶ Label
Statevector
"0"
\(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\)
"1"
\(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\)
"+"
\(\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\)
"-"
\(\frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}\)
"r"
\(\frac{1}{2}\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}\)
"l"
\(\frac{1}{2}\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}\)
- Parâmetros
label (string) – a eigenstate string ket label (see table for allowed values).
- Retorna
The N-qubit basis state density matrix.
- Tipo de retorno
- Levanta
QiskitError – if the label contains invalid characters, or the length of the label is larger than an explicitly specified num_qubits.
-
is_valid
(atol=None, rtol=None)[código fonte]¶ Return True if trace 1 and positive semidefinite.
-
measure
(qargs=None)¶ Measure subsystems and return outcome and post-measure state.
Note that this function uses the QuantumStates internal random number generator for sampling the measurement outcome. The RNG seed can be set using the
seed()
method.- Parâmetros
qargs (list or None) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).
- Retorna
- the pair
(outcome, state)
whereoutcome
is the measurement outcome string label, and
state
is the collapsed post-measurement state for the corresponding outcome.
- the pair
- Tipo de retorno
tuple
-
multiply
(other)¶ Return the scalar multipled state other * self.
- Parâmetros
other (complex) – a complex number.
- Retorna
the scalar multipled state other * self.
- Tipo de retorno
QuantumState
- Levanta
QiskitError – if other is not a valid complex number.
-
property
num_qubits
¶ Return the number of qubits if a N-qubit state or None otherwise.
-
probabilities
(qargs=None, decimals=None)[código fonte]¶ Return the subsystem measurement probability vector.
Measurement probabilities are with respect to measurement in the computation (diagonal) basis.
- Parâmetros
qargs (None or list) – subsystems to return probabilities for, if None return for all subsystems (Default: None).
decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).
- Retorna
The Numpy vector array of probabilities.
- Tipo de retorno
np.array
Exemplos
Consider a 2-qubit product state \(\rho=\rho_1\otimes\rho_0\) with \(\rho_1=|+\rangle\!\langle+|\), \(\rho_0=|0\rangle\!\langle0|\).
from qiskit.quantum_info import DensityMatrix rho = DensityMatrix.from_label('+0') # Probabilities for measuring both qubits probs = rho.probabilities() print('probs: {}'.format(probs)) # Probabilities for measuring only qubit-0 probs_qubit_0 = rho.probabilities([0]) print('Qubit-0 probs: {}'.format(probs_qubit_0)) # Probabilities for measuring only qubit-1 probs_qubit_1 = rho.probabilities([1]) print('Qubit-1 probs: {}'.format(probs_qubit_1))
probs: [0.5 0. 0.5 0. ] Qubit-0 probs: [1. 0.] Qubit-1 probs: [0.5 0.5]
We can also permute the order of qubits in the
qargs
list to change the qubit position in the probabilities outputfrom qiskit.quantum_info import DensityMatrix rho = DensityMatrix.from_label('+0') # Probabilities for measuring both qubits probs = rho.probabilities([0, 1]) print('probs: {}'.format(probs)) # Probabilities for measuring both qubits # but swapping qubits 0 and 1 in output probs_swapped = rho.probabilities([1, 0]) print('Swapped probs: {}'.format(probs_swapped))
probs: [0.5 0. 0.5 0. ] Swapped probs: [0.5 0.5 0. 0. ]
-
probabilities_dict
(qargs=None, decimals=None)¶ Return the subsystem measurement probability dictionary.
Measurement probabilities are with respect to measurement in the computation (diagonal) basis.
This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.
- Parâmetros
qargs (None or list) – subsystems to return probabilities for, if None return for all subsystems (Default: None).
decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).
- Retorna
The measurement probabilities in dict (ket) form.
- Tipo de retorno
dict
-
purity
()[código fonte]¶ Return the purity of the quantum state.
-
reset
(qargs=None)[código fonte]¶ Reset state or subsystems to the 0-state.
- Parâmetros
qargs (list or None) – subsystems to reset, if None all subsystems will be reset to their 0-state (Default: None).
- Retorna
the reset state.
- Tipo de retorno
- Additional Information:
If all subsystems are reset this will return the ground state on all subsystems. If only a some subsystems are reset this function will perform evolution by the reset
SuperOp
of the reset subsystems.
-
property
rtol
¶ The relative tolerance parameter for float comparisons.
-
sample_counts
(shots, qargs=None)¶ Sample a dict of qubit measurement outcomes in the computational basis.
- Parâmetros
shots (int) – number of samples to generate.
qargs (None or list) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).
- Retorna
sampled counts dictionary.
- Tipo de retorno
Additional Information:
This function samples measurement outcomes using the measure
probabilities()
for the current state and qargs. It does not actually implement the measurement so the current state is not modified.The seed for random number generator used for sampling can be set to a fixed value by using the stats
seed()
method.
-
sample_memory
(shots, qargs=None)¶ Sample a list of qubit measurement outcomes in the computational basis.
- Parâmetros
shots (int) – number of samples to generate.
qargs (None or list) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).
- Retorna
list of sampled counts if the order sampled.
- Tipo de retorno
np.array
Additional Information:
This function samples measurement outcomes using the measure
probabilities()
for the current state and qargs. It does not actually implement the measurement so the current state is not modified.The seed for random number generator used for sampling can be set to a fixed value by using the stats
seed()
method.
-
seed
(value=None)¶ Set the seed for the quantum state RNG.
-
classmethod
set_atol
(value)¶ Set the class default absolute tolerance parameter for float comparisons.
DEPRECATED: use operator.atol = value instead
-
classmethod
set_rtol
(value)¶ Set the class default relative tolerance parameter for float comparisons.
DEPRECATED: use operator.rtol = value instead
-
subtract
(other)¶ Return the linear operator self - other.
DEPRECATED: use
state - other
instead.- Parâmetros
other (QuantumState) – a quantum state object.
- Retorna
the linear combination self - other.
- Tipo de retorno
LinearOperator
- Levanta
QiskitError – if other is not a quantum state, or has incompatible dimensions.
-
tensor
(other)[código fonte]¶ Return the tensor product state self ⊗ other.
- Parâmetros
other (DensityMatrix) – a quantum state object.
- Retorna
the tensor product operator self ⊗ other.
- Tipo de retorno
- Levanta
QiskitError – if other is not a quantum state.
-
to_counts
()[código fonte]¶ Returns the density matrix as a counts dict of probabilities.
DEPRECATED: use
probabilities_dict()
instead.- Retorna
Counts of probabilities.
- Tipo de retorno
dict
-
to_dict
(decimals=None)[código fonte]¶ Convert the density matrix to dictionary form.
This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.
- Parâmetros
decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).
- Retorna
the dictionary form of the DensityMatrix.
- Tipo de retorno
dict
Exemplos
The ket-form of a 2-qubit density matrix \(rho = |-\rangle\!\langle -|\otimes |0\rangle\!\langle 0|\)
from qiskit.quantum_info import DensityMatrix rho = DensityMatrix.from_label('-0') print(rho.to_dict())
{'00|00': (0.4999999999999999+0j), '10|00': (-0.4999999999999999-0j), '00|10': (-0.4999999999999999+0j), '10|10': (0.4999999999999999+0j)}
For non-qubit subsystems the integer range can go from 0 to 9. For example in a qutrit system
import numpy as np from qiskit.quantum_info import DensityMatrix mat = np.zeros((9, 9)) mat[0, 0] = 0.25 mat[3, 3] = 0.25 mat[6, 6] = 0.25 mat[-1, -1] = 0.25 rho = DensityMatrix(mat, dims=(3, 3)) print(rho.to_dict())
{'00|00': (0.25+0j), '10|10': (0.25+0j), '20|20': (0.25+0j), '22|22': (0.25+0j)}
For large subsystem dimensions delimeters are required. The following example is for a 20-dimensional system consisting of a qubit and 10-dimensional qudit.
import numpy as np from qiskit.quantum_info import DensityMatrix mat = np.zeros((2 * 10, 2 * 10)) mat[0, 0] = 0.5 mat[-1, -1] = 0.5 rho = DensityMatrix(mat, dims=(2, 10)) print(rho.to_dict())
{'00|00': (0.5+0j), '91|91': (0.5+0j)}
-
to_operator
()[código fonte]¶ Convert to Operator
-
to_statevector
(atol=None, rtol=None)[código fonte]¶ Return a statevector from a pure density matrix.
- Parâmetros
atol (float) – Absolute tolerance for checking operation validity.
rtol (float) – Relative tolerance for checking operation validity.
- Retorna
- The pure density matrix’s corresponding statevector.
Corresponds to the eigenvector of the only non-zero eigenvalue.
- Tipo de retorno
- Levanta
QiskitError – if the state is not pure.
-
trace
()[código fonte]¶ Return the trace of the density matrix.