qiskit.quantum_info.DensityMatrix¶
-
class
DensityMatrix
(data, dims=None)[ソース]¶ DensityMatrix class
Initialize a density matrix object.
- パラメータ
data (matrix_like or vector_like) – a density matrix or statevector. If a vector the density matrix is constructed as the projector of that vector.
dims (int or tuple or list) – Optional. The subsystem dimension of the state (See additional information).
- 例外
QiskitError – if input data is not valid.
- Additional Information:
The
dims
kwarg can be None, an integer, or an iterable of integers.Iterable
– the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.Int
orNone
– the leading dimension of the input matrix specifies the total dimension of the density matrix. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.
-
__init__
(data, dims=None)[ソース]¶ Initialize a density matrix object.
- パラメータ
data (matrix_like or vector_like) – a density matrix or statevector. If a vector the density matrix is constructed as the projector of that vector.
dims (int or tuple or list) – Optional. The subsystem dimension of the state (See additional information).
- 例外
QiskitError – if input data is not valid.
- Additional Information:
The
dims
kwarg can be None, an integer, or an iterable of integers.Iterable
– the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.Int
orNone
– the leading dimension of the input matrix specifies the total dimension of the density matrix. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.
Methods
__init__
(data[, dims])Initialize a density matrix object.
add
(other)Return the linear combination self + other.
Return the conjugate of the density matrix.
copy
()Make a copy of current operator.
dims
([qargs])Return tuple of input dimension for specified subsystems.
evolve
(other[, qargs])Evolve a quantum state by an operator.
expand
(other)Return the tensor product state other ⊗ self.
expectation_value
(oper[, qargs])Compute the expectation value of an operator.
from_instruction
(instruction)Return the output density matrix of an instruction.
from_int
(i, dims)Return a computational basis state density matrix.
from_label
(label)Return a tensor product of Pauli X,Y,Z eigenstates.
is_valid
([atol, rtol])Return True if trace 1 and positive semidefinite.
measure
([qargs])Measure subsystems and return outcome and post-measure state.
multiply
(other)Return the scalar multipled state other * self.
probabilities
([qargs, decimals])Return the subsystem measurement probability vector.
probabilities_dict
([qargs, decimals])Return the subsystem measurement probability dictionary.
purity
()Return the purity of the quantum state.
reset
([qargs])Reset state or subsystems to the 0-state.
sample_counts
(shots[, qargs])Sample a dict of qubit measurement outcomes in the computational basis.
sample_memory
(shots[, qargs])Sample a list of qubit measurement outcomes in the computational basis.
seed
([value])Set the seed for the quantum state RNG.
set_atol
(value)Set the class default absolute tolerance parameter for float comparisons.
set_rtol
(value)Set the class default relative tolerance parameter for float comparisons.
subtract
(other)Return the linear operator self - other.
tensor
(other)Return the tensor product state self ⊗ other.
Returns the density matrix as a counts dict of probabilities.
to_dict
([decimals])Convert the density matrix to dictionary form.
Convert to Operator
to_statevector
([atol, rtol])Return a statevector from a pure density matrix.
trace
()Return the trace of the density matrix.
Attributes
The absolute tolerance parameter for float comparisons.
Return data.
Return total state dimension.
Return the number of qubits if a N-qubit state or None otherwise.
The relative tolerance parameter for float comparisons.
-
add
(other)¶ Return the linear combination self + other.
DEPRECATED: use
state + other
instead.- パラメータ
other (QuantumState) – a quantum state object.
- 戻り値
the linear combination self + other.
- 戻り値の型
LinearOperator
- 例外
QiskitError – if other is not a quantum state, or has incompatible dimensions.
-
property
atol
¶ The absolute tolerance parameter for float comparisons.
-
copy
()¶ Make a copy of current operator.
-
property
data
¶ Return data.
-
property
dim
¶ Return total state dimension.
-
dims
(qargs=None)¶ Return tuple of input dimension for specified subsystems.
-
evolve
(other, qargs=None)[ソース]¶ Evolve a quantum state by an operator.
- パラメータ
(Operator or QuantumChannel (other) – or Instruction or Circuit): The operator to evolve by.
qargs (list) – a list of QuantumState subsystem positions to apply the operator on.
- 戻り値
the output quantum state.
- 戻り値の型
QuantumState
- 例外
QiskitError – if the operator dimension does not match the specified QuantumState subsystem dimensions.
-
expand
(other)[ソース]¶ Return the tensor product state other ⊗ self.
- パラメータ
other (DensityMatrix) – a quantum state object.
- 戻り値
the tensor product state other ⊗ self.
- 戻り値の型
- 例外
QiskitError – if other is not a quantum state.
-
expectation_value
(oper, qargs=None)[ソース]¶ Compute the expectation value of an operator.
- パラメータ
oper (Operator) – an operator to evaluate expval.
qargs (None or list) – subsystems to apply the operator on.
- 戻り値
the expectation value.
- 戻り値の型
complex
-
classmethod
from_instruction
(instruction)[ソース]¶ Return the output density matrix of an instruction.
The statevector is initialized in the state \(|{0,\ldots,0}\rangle\) of the same number of qubits as the input instruction or circuit, evolved by the input instruction, and the output statevector returned.
- パラメータ
instruction (qiskit.circuit.Instruction or QuantumCircuit) – instruction or circuit
- 戻り値
the final density matrix.
- 戻り値の型
- 例外
QiskitError – if the instruction contains invalid instructions for density matrix simulation.
-
static
from_int
(i, dims)[ソース]¶ Return a computational basis state density matrix.
- パラメータ
i (int) – the basis state element.
dims (int or tuple or list) – The subsystem dimensions of the statevector (See additional information).
- 戻り値
The computational basis state \(|i\rangle\!\langle i|\).
- 戻り値の型
- Additional Information:
The
dims
kwarg can be an integer or an iterable of integers.Iterable
– the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.Int
– the integer specifies the total dimension of the state. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.
-
classmethod
from_label
(label)[ソース]¶ Return a tensor product of Pauli X,Y,Z eigenstates.
Table 16 Single-qubit state labels¶ Label
Statevector
"0"
\(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\)
"1"
\(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\)
"+"
\(\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\)
"-"
\(\frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}\)
"r"
\(\frac{1}{2}\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}\)
"l"
\(\frac{1}{2}\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}\)
- パラメータ
label (string) – a eigenstate string ket label (see table for allowed values).
- 戻り値
The N-qubit basis state density matrix.
- 戻り値の型
- 例外
QiskitError – if the label contains invalid characters, or the length of the label is larger than an explicitly specified num_qubits.
-
measure
(qargs=None)¶ Measure subsystems and return outcome and post-measure state.
Note that this function uses the QuantumStates internal random number generator for sampling the measurement outcome. The RNG seed can be set using the
seed()
method.- パラメータ
qargs (list or None) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).
- 戻り値
- the pair
(outcome, state)
whereoutcome
is the measurement outcome string label, and
state
is the collapsed post-measurement state for the corresponding outcome.
- the pair
- 戻り値の型
tuple
-
multiply
(other)¶ Return the scalar multipled state other * self.
- パラメータ
other (complex) – a complex number.
- 戻り値
the scalar multipled state other * self.
- 戻り値の型
QuantumState
- 例外
QiskitError – if other is not a valid complex number.
-
property
num_qubits
¶ Return the number of qubits if a N-qubit state or None otherwise.
-
probabilities
(qargs=None, decimals=None)[ソース]¶ Return the subsystem measurement probability vector.
Measurement probabilities are with respect to measurement in the computation (diagonal) basis.
- パラメータ
qargs (None or list) – subsystems to return probabilities for, if None return for all subsystems (Default: None).
decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).
- 戻り値
The Numpy vector array of probabilities.
- 戻り値の型
np.array
サンプル
Consider a 2-qubit product state \(\rho=\rho_1\otimes\rho_0\) with \(\rho_1=|+\rangle\!\langle+|\), \(\rho_0=|0\rangle\!\langle0|\).
from qiskit.quantum_info import DensityMatrix rho = DensityMatrix.from_label('+0') # Probabilities for measuring both qubits probs = rho.probabilities() print('probs: {}'.format(probs)) # Probabilities for measuring only qubit-0 probs_qubit_0 = rho.probabilities([0]) print('Qubit-0 probs: {}'.format(probs_qubit_0)) # Probabilities for measuring only qubit-1 probs_qubit_1 = rho.probabilities([1]) print('Qubit-1 probs: {}'.format(probs_qubit_1))
probs: [0.5 0. 0.5 0. ] Qubit-0 probs: [1. 0.] Qubit-1 probs: [0.5 0.5]
We can also permute the order of qubits in the
qargs
list to change the qubit position in the probabilities outputfrom qiskit.quantum_info import DensityMatrix rho = DensityMatrix.from_label('+0') # Probabilities for measuring both qubits probs = rho.probabilities([0, 1]) print('probs: {}'.format(probs)) # Probabilities for measuring both qubits # but swapping qubits 0 and 1 in output probs_swapped = rho.probabilities([1, 0]) print('Swapped probs: {}'.format(probs_swapped))
probs: [0.5 0. 0.5 0. ] Swapped probs: [0.5 0.5 0. 0. ]
-
probabilities_dict
(qargs=None, decimals=None)¶ Return the subsystem measurement probability dictionary.
Measurement probabilities are with respect to measurement in the computation (diagonal) basis.
This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.
- パラメータ
qargs (None or list) – subsystems to return probabilities for, if None return for all subsystems (Default: None).
decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).
- 戻り値
The measurement probabilities in dict (ket) form.
- 戻り値の型
dict
-
reset
(qargs=None)[ソース]¶ Reset state or subsystems to the 0-state.
- パラメータ
qargs (list or None) – subsystems to reset, if None all subsystems will be reset to their 0-state (Default: None).
- 戻り値
the reset state.
- 戻り値の型
- Additional Information:
If all subsystems are reset this will return the ground state on all subsystems. If only a some subsystems are reset this function will perform evolution by the reset
SuperOp
of the reset subsystems.
-
property
rtol
¶ The relative tolerance parameter for float comparisons.
-
sample_counts
(shots, qargs=None)¶ Sample a dict of qubit measurement outcomes in the computational basis.
- パラメータ
shots (int) – number of samples to generate.
qargs (None or list) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).
- 戻り値
sampled counts dictionary.
- 戻り値の型
Additional Information:
This function samples measurement outcomes using the measure
probabilities()
for the current state and qargs. It does not actually implement the measurement so the current state is not modified.The seed for random number generator used for sampling can be set to a fixed value by using the stats
seed()
method.
-
sample_memory
(shots, qargs=None)¶ Sample a list of qubit measurement outcomes in the computational basis.
- パラメータ
shots (int) – number of samples to generate.
qargs (None or list) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).
- 戻り値
list of sampled counts if the order sampled.
- 戻り値の型
np.array
Additional Information:
This function samples measurement outcomes using the measure
probabilities()
for the current state and qargs. It does not actually implement the measurement so the current state is not modified.The seed for random number generator used for sampling can be set to a fixed value by using the stats
seed()
method.
-
seed
(value=None)¶ Set the seed for the quantum state RNG.
-
classmethod
set_atol
(value)¶ Set the class default absolute tolerance parameter for float comparisons.
DEPRECATED: use operator.atol = value instead
-
classmethod
set_rtol
(value)¶ Set the class default relative tolerance parameter for float comparisons.
DEPRECATED: use operator.rtol = value instead
-
subtract
(other)¶ Return the linear operator self - other.
DEPRECATED: use
state - other
instead.- パラメータ
other (QuantumState) – a quantum state object.
- 戻り値
the linear combination self - other.
- 戻り値の型
LinearOperator
- 例外
QiskitError – if other is not a quantum state, or has incompatible dimensions.
-
tensor
(other)[ソース]¶ Return the tensor product state self ⊗ other.
- パラメータ
other (DensityMatrix) – a quantum state object.
- 戻り値
the tensor product operator self ⊗ other.
- 戻り値の型
- 例外
QiskitError – if other is not a quantum state.
-
to_counts
()[ソース]¶ Returns the density matrix as a counts dict of probabilities.
DEPRECATED: use
probabilities_dict()
instead.- 戻り値
Counts of probabilities.
- 戻り値の型
dict
-
to_dict
(decimals=None)[ソース]¶ Convert the density matrix to dictionary form.
This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.
- パラメータ
decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).
- 戻り値
the dictionary form of the DensityMatrix.
- 戻り値の型
dict
サンプル
The ket-form of a 2-qubit density matrix \(rho = |-\rangle\!\langle -|\otimes |0\rangle\!\langle 0|\)
from qiskit.quantum_info import DensityMatrix rho = DensityMatrix.from_label('-0') print(rho.to_dict())
{'00|00': (0.4999999999999999+0j), '10|00': (-0.4999999999999999-0j), '00|10': (-0.4999999999999999+0j), '10|10': (0.4999999999999999+0j)}
For non-qubit subsystems the integer range can go from 0 to 9. For example in a qutrit system
import numpy as np from qiskit.quantum_info import DensityMatrix mat = np.zeros((9, 9)) mat[0, 0] = 0.25 mat[3, 3] = 0.25 mat[6, 6] = 0.25 mat[-1, -1] = 0.25 rho = DensityMatrix(mat, dims=(3, 3)) print(rho.to_dict())
{'00|00': (0.25+0j), '10|10': (0.25+0j), '20|20': (0.25+0j), '22|22': (0.25+0j)}
For large subsystem dimensions delimeters are required. The following example is for a 20-dimensional system consisting of a qubit and 10-dimensional qudit.
import numpy as np from qiskit.quantum_info import DensityMatrix mat = np.zeros((2 * 10, 2 * 10)) mat[0, 0] = 0.5 mat[-1, -1] = 0.5 rho = DensityMatrix(mat, dims=(2, 10)) print(rho.to_dict())
{'00|00': (0.5+0j), '91|91': (0.5+0j)}
-
to_statevector
(atol=None, rtol=None)[ソース]¶ Return a statevector from a pure density matrix.
- パラメータ
atol (float) – Absolute tolerance for checking operation validity.
rtol (float) – Relative tolerance for checking operation validity.
- 戻り値
- The pure density matrix’s corresponding statevector.
Corresponds to the eigenvector of the only non-zero eigenvalue.
- 戻り値の型
- 例外
QiskitError – if the state is not pure.