Kraus¶
- class Kraus(data, input_dims=None, output_dims=None)[source]¶
Kraus representation of a quantum channel.
The Kraus representation for a quantum channel \(\mathcal{E}\) is a set of matrices \([A_0,...,A_{K-1}]\) such that
For a quantum channel \(\mathcal{E}\), the Kraus representation is given by a set of matrices \([A_0,...,A_{K-1}]\) such that the evolution of a
DensityMatrix
\(\rho\) is given by\[\mathcal{E}(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger\]A general operator map \(\mathcal{G}\) can also be written using the generalized Kraus representation which is given by two sets of matrices \([A_0,...,A_{K-1}]\), \([B_0,...,A_{B-1}]\) such that
\[\mathcal{G}(\rho) = \sum_{i=0}^{K-1} A_i \rho B_i^\dagger\]See reference [1] for further details.
References
C.J. Wood, J.D. Biamonte, D.G. Cory, Tensor networks and graphical calculus for open quantum systems, Quant. Inf. Comp. 15, 0579-0811 (2015). arXiv:1111.6950 [quant-ph]
Initialize a quantum channel Kraus operator.
- Parameters
or (data (QuantumCircuit) – Instruction or BaseOperator or matrix): data to initialize superoperator.
input_dims (tuple) – the input subsystem dimensions. [Default: None]
output_dims (tuple) – the output subsystem dimensions. [Default: None]
- Raises
QiskitError – if input data cannot be initialized as a a list of Kraus matrices.
- Additional Information:
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a list of Numpy arrays of shape (2**N, 2**N) qubit systems will be used. If the input does not correspond to an N-qubit channel, it will assign a single subsystem with dimension specified by the shape of the input.
Attributes
The default absolute tolerance parameter for float comparisons.
Return list of Kraus matrices for channel.
Return tuple (input_shape, output_shape).
Return the number of qubits if a N-qubit operator or None otherwise.
Return the qargs for the operator.
The relative tolerance parameter for float comparisons.
Methods
Kraus.__call__
(qargs)Return a clone with qargs set
Kraus.__mul__
(other)Kraus.add
(other)Return the linear operator self + other.
Return the adjoint of the operator.
Kraus.compose
(other[, qargs, front])Return the composed quantum channel self @ other.
Return the conjugate of the QuantumChannel.
Make a deep copy of current operator.
Kraus.dot
(other[, qargs])Return the right multiplied quantum channel self * other.
Kraus.expand
(other)Return the tensor product channel other ⊗ self.
Kraus.input_dims
([qargs])Return tuple of input dimension for specified subsystems.
Kraus.is_cp
([atol, rtol])Test if Choi-matrix is completely-positive (CP)
Kraus.is_cptp
([atol, rtol])Return True if completely-positive trace-preserving.
Kraus.is_tp
([atol, rtol])Test if a channel is completely-positive (CP)
Kraus.is_unitary
([atol, rtol])Return True if QuantumChannel is a unitary channel.
Kraus.multiply
(other)Return the linear operator other * self.
Kraus.output_dims
([qargs])Return tuple of output dimension for specified subsystems.
Kraus.power
(n)The matrix power of the channel.
Kraus.reshape
([input_dims, output_dims])Return a shallow copy with reshaped input and output subsystem dimensions.
Kraus.set_atol
(value)Set the class default absolute tolerance parameter for float comparisons.
Kraus.set_rtol
(value)Set the class default relative tolerance parameter for float comparisons.
Kraus.subtract
(other)Return the linear operator self - other.
Kraus.tensor
(other)Return the tensor product channel self ⊗ other.
Convert to a Kraus or UnitaryGate circuit instruction.
Try to convert channel to a unitary representation Operator.
Return the transpose of the QuantumChannel.
Kraus.__call__
(qargs)Return a clone with qargs set
Kraus.__mul__
(other)