Choi¶
- class Choi(data, input_dims=None, output_dims=None)[source]¶
Choi-matrix representation of a Quantum Channel.
The Choi-matrix representation of a quantum channel \(\mathcal{E}\) is a matrix
\[\Lambda = \sum_{i,j} |i\rangle\!\langle j|\otimes \mathcal{E}\left(|i\rangle\!\langle j|\right)\]Evolution of a
DensityMatrix
\(\rho\) with respect to the Choi-matrix is given by\[\mathcal{E}(\rho) = \mbox{Tr}_{1}\left[\Lambda (\rho^T \otimes \mathbb{I})\right]\]where \(\mbox{Tr}_1\) is the
partial_trace()
over subsystem 1.See reference [1] for further details.
References
C.J. Wood, J.D. Biamonte, D.G. Cory, Tensor networks and graphical calculus for open quantum systems, Quant. Inf. Comp. 15, 0579-0811 (2015). arXiv:1111.6950 [quant-ph]
Initialize a quantum channel Choi matrix operator.
- Parameters
or (data (QuantumCircuit) – Instruction or BaseOperator or matrix): data to initialize superoperator.
input_dims (tuple) – the input subsystem dimensions. [Default: None]
output_dims (tuple) – the output subsystem dimensions. [Default: None]
- Raises
QiskitError – if input data cannot be initialized as a Choi matrix.
- Additional Information:
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a Numpy array of shape (4**N, 4**N) qubit systems will be used. If the input operator is not an N-qubit operator, it will assign a single subsystem with dimension specified by the shape of the input.
Attributes
The default absolute tolerance parameter for float comparisons.
Return data.
Return tuple (input_shape, output_shape).
Return the number of qubits if a N-qubit operator or None otherwise.
Return the qargs for the operator.
The relative tolerance parameter for float comparisons.
Methods
Choi.__call__
(qargs)Return a clone with qargs set
Choi.__mul__
(other)Choi.add
(other)Return the linear operator self + other.
Return the adjoint of the operator.
Choi.compose
(other[, qargs, front])Return the composed quantum channel self @ other.
Return the conjugate of the QuantumChannel.
Make a deep copy of current operator.
Choi.dot
(other[, qargs])Return the right multiplied operator self * other.
Choi.expand
(other)Return the tensor product channel other ⊗ self.
Choi.input_dims
([qargs])Return tuple of input dimension for specified subsystems.
Choi.is_cp
([atol, rtol])Test if Choi-matrix is completely-positive (CP)
Choi.is_cptp
([atol, rtol])Return True if completely-positive trace-preserving (CPTP).
Choi.is_tp
([atol, rtol])Test if a channel is completely-positive (CP)
Choi.is_unitary
([atol, rtol])Return True if QuantumChannel is a unitary channel.
Choi.multiply
(other)Return the linear operator other * self.
Choi.output_dims
([qargs])Return tuple of output dimension for specified subsystems.
Choi.power
(n)The matrix power of the channel.
Choi.reshape
([input_dims, output_dims])Return a shallow copy with reshaped input and output subsystem dimensions.
Choi.set_atol
(value)Set the class default absolute tolerance parameter for float comparisons.
Choi.set_rtol
(value)Set the class default relative tolerance parameter for float comparisons.
Choi.subtract
(other)Return the linear operator self - other.
Choi.tensor
(other)Return the tensor product channel self ⊗ other.
Convert to a Kraus or UnitaryGate circuit instruction.
Try to convert channel to a unitary representation Operator.
Return the transpose of the QuantumChannel.
Choi.__call__
(qargs)Return a clone with qargs set
Choi.__mul__
(other)