GaussianConditionalIndependenceModel¶
- class GaussianConditionalIndependenceModel(n_normal, normal_max_value, p_zeros, rhos, i_normal=None, i_ps=None)[source]¶
The Gaussian Conditional Independence Model for Credit Risk.
Reference: https://arxiv.org/abs/1412.1183
Dependency between individual risk variables and latent variable is approximated linearly.
- Parameters
n_normal (
int
) – Number of qubits to represent the latent normal random variable Znormal_max_value (
float
) – Min/max value to truncate the latent normal random variable Zp_zeros (
Union
[List
[float
],ndarray
]) – Standard default probabilities for each assetrhos (
Union
[List
[float
],ndarray
]) – Sensitivities of default probability of assets with respect to latent variable Zi_normal (
Union
[List
[float
],ndarray
,None
]) – Indices of qubits to represent normal variablei_ps (
Union
[List
[float
],ndarray
,None
]) – Indices of qubits to represent asset defaults
Attributes
returns dimensions
returns high
returns low
returns num qubits
Returns the number of target qubits
returns number of values
returns probabilities
returns probabilities vector
returns values
Methods
GaussianConditionalIndependenceModel.build_controlled
(qc, …)Adds corresponding controlled sub-circuit to given circuit
GaussianConditionalIndependenceModel.build_controlled_inverse
(qc, …)Adds controlled inverse of corresponding sub-circuit to given circuit
GaussianConditionalIndependenceModel.build_controlled_inverse_power
(qc, …)Adds controlled, inverse, power of corresponding circuit.
GaussianConditionalIndependenceModel.build_controlled_power
(qc, …)Adds controlled power of corresponding circuit.
Adds inverse of corresponding sub-circuit to given circuit
GaussianConditionalIndependenceModel.build_inverse_power
(qc, …)Adds inverse power of corresponding circuit.
Adds power of corresponding circuit.
returns number of qubits
GaussianConditionalIndependenceModel.get_num_qubits_controlled
()returns number of qubits controlled
GaussianConditionalIndependenceModel.pdf_to_probabilities
(…)pdf to probabilities
returns required ancillas
GaussianConditionalIndependenceModel.required_ancillas_controlled
()returns required ancillas controlled