POWELL

class POWELL(maxiter=None, maxfev=1000, disp=False, xtol=0.0001, tol=None)[source]

Powell optimizer.

The Powell algorithm performs unconstrained optimization; it ignores bounds or constraints. Powell is a conjugate direction method: it performs sequential one-dimensional minimization along each directional vector, which is updated at each iteration of the main minimization loop. The function being minimized need not be differentiable, and no derivatives are taken.

Uses scipy.optimize.minimize Powell. For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Parameters
  • maxiter (Optional[int]) – Maximum allowed number of iterations. If both maxiter and maxfev are set, minimization will stop at the first reached.

  • maxfev (int) – Maximum allowed number of function evaluations. If both maxiter and maxfev are set, minimization will stop at the first reached.

  • disp (bool) – Set to True to print convergence messages.

  • xtol (float) – Relative error in solution xopt acceptable for convergence.

  • tol (Optional[float]) – Tolerance for termination.

Attributes

POWELL.bounds_support_level

Returns bounds support level

POWELL.gradient_support_level

Returns gradient support level

POWELL.initial_point_support_level

Returns initial point support level

POWELL.is_bounds_ignored

Returns is bounds ignored

POWELL.is_bounds_required

Returns is bounds required

POWELL.is_bounds_supported

Returns is bounds supported

POWELL.is_gradient_ignored

Returns is gradient ignored

POWELL.is_gradient_required

Returns is gradient required

POWELL.is_gradient_supported

Returns is gradient supported

POWELL.is_initial_point_ignored

Returns is initial point ignored

POWELL.is_initial_point_required

Returns is initial point required

POWELL.is_initial_point_supported

Returns is initial point supported

POWELL.setting

Return setting

Methods

POWELL.get_support_level()

Return support level dictionary

POWELL.gradient_num_diff(x_center, f, epsilon)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

POWELL.optimize(num_vars, objective_function)

Perform optimization.

POWELL.print_options()

Print algorithm-specific options.

POWELL.set_max_evals_grouped(limit)

Set max evals grouped

POWELL.set_options(**kwargs)

Sets or updates values in the options dictionary.

POWELL.wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.