PauliFeatureMap¶
-
class
PauliFeatureMap
(feature_dimension=None, reps=2, entanglement='full', alpha=2.0, paulis=None, data_map_func=None, parameter_prefix='x', insert_barriers=False, name='PauliFeatureMap')[source]¶ Bases:
qiskit.circuit.library.n_local.n_local.NLocal
The Pauli Expansion circuit.
The Pauli Expansion circuit is a data encoding circuit that transforms input data \(\vec{x} \in \mathbb{R}^n\) as
\[U_{\Phi(\vec{x})}=\exp\left(i\sum_{S\subseteq [n]} \phi_S(\vec{x})\prod_{i\in S} P_i\right)\]The circuit contains
reps
repetitions of this transformation. The variable \(P_i \in \{ I, X, Y, Z \}\) denotes the Pauli matrices. The index \(S\) describes connectivities between different qubits or datapoints: \(S \in \{\binom{n}{k}\ combinations,\ k = 1,... n \}\). Per default the data-mapping \(\phi_S\) is\[\begin{split}\phi_S(\vec{x}) = \begin{cases} x_0 \text{ if } k = 1 \\ \prod_{j \in S} (\pi - x_j) \text{ otherwise } \end{cases}\end{split}\]For example, if the Pauli strings are chosen to be \(P_0 = Z\) and \(P_{0,1} = YY\) on 2 qubits and with 1 repetition using the default data-mapping, the Pauli evolution feature map is represented by:
┌───┐┌──────────────┐┌──────────┐ ┌───────────┐ ┤ H ├┤ U1(2.0*x[0]) ├┤ RX(pi/2) ├──■───────────────────────────────────────■──┤ RX(-pi/2) ├ ├───┤├──────────────┤├──────────┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐├───────────┤ ┤ H ├┤ U1(2.0*x[1]) ├┤ RX(pi/2) ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├┤ RX(-pi/2) ├ └───┘└──────────────┘└──────────┘└───┘└─────────────────────────────────┘└───┘└───────────┘
Please refer to
ZFeatureMap
for the case \(k = 1\), \(P_0 = Z\) and toZZFeatureMap
for the case \(k = 2\), \(P_0 = Z\) and \(P_{0,1} = ZZ\).Examples
>>> prep = PauliFeatureMap(2, reps=1, paulis=['ZZ']) >>> print(prep) ┌───┐ q_0: ┤ H ├──■───────────────────────────────────────■── ├───┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐ q_1: ┤ H ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├ └───┘└───┘└─────────────────────────────────┘└───┘
>>> prep = PauliFeatureMap(2, reps=1, paulis=['Z', 'XX']) >>> print(prep) ┌───┐┌──────────────┐┌───┐ ┌───┐ q_0: ┤ H ├┤ U1(2.0*x[0]) ├┤ H ├──■───────────────────────────────────────■──┤ H ├ ├───┤├──────────────┤├───┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐├───┤ q_1: ┤ H ├┤ U1(2.0*x[1]) ├┤ H ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├┤ H ├ └───┘└──────────────┘└───┘└───┘└─────────────────────────────────┘└───┘└───┘
>>> prep = PauliFeatureMap(2, reps=1, paulis=['ZY']) >>> print(prep) ┌───┐┌──────────┐ ┌───────────┐ q_0: ┤ H ├┤ RX(pi/2) ├──■───────────────────────────────────────■──┤ RX(-pi/2) ├ ├───┤└──────────┘┌─┴─┐┌─────────────────────────────────┐┌─┴─┐└───────────┘ q_1: ┤ H ├────────────┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├───────────── └───┘ └───┘└─────────────────────────────────┘└───┘
>>> from qiskit.circuit.library import EfficientSU2 >>> prep = PauliFeatureMap(3, reps=3, paulis=['Z', 'YY', 'ZXZ']) >>> wavefunction = EfficientSU2(3) >>> classifier = prep.compose(wavefunction >>> classifier.num_parameters 27 >>> classifier.count_ops() OrderedDict([('cx', 39), ('rx', 36), ('u1', 21), ('h', 15), ('ry', 12), ('rz', 12)])
References
- [1]: Havlicek et al. (2018), Supervised learning with quantum enhanced feature spaces.
Create a new Pauli expansion circuit.
- Parameters
feature_dimension (
Optional
[int
]) – Number of qubits in the circuit.reps (
int
) – The number of repeated circuits.entanglement (
Union
[str
,List
[List
[int
]],Callable
[[int
],List
[int
]]]) – Specifies the entanglement structure. Refer toNLocal
for detail.alpha (
float
) – The Pauli rotation factor, multiplicative to the pauli rotationspaulis (
Optional
[List
[str
]]) – A list of strings for to-be-used paulis. If None are provided,['Z', 'ZZ']
will be used.data_map_func (
Optional
[Callable
[[ndarray
],float
]]) – A mapping function for data x which can be supplied to override the default mapping fromself_product()
.parameter_prefix (
str
) – The prefix used if default parameters are generated.insert_barriers (
bool
) – If True, barriers are inserted in between the evolution instructions and hadamard layers.
Methods Defined Here
Get the Pauli block for the feature map circuit.
Get the evolution block for the given pauli string.
Attributes
-
alpha
¶ The Pauli rotation factor (alpha).
- Return type
float
- Returns
The Pauli rotation factor.
-
ancillas
¶ Returns a list of ancilla bits in the order that the registers were added.
-
calibrations
¶ Return calibration dictionary.
- The custom pulse definition of a given gate is of the form
{‘gate_name’: {(qubits, params): schedule}}
-
clbits
¶ Returns a list of classical bits in the order that the registers were added.
-
data
¶
-
entanglement
¶ Get the entanglement strategy.
- Return type
Union
[str
,List
[str
],List
[List
[str
]],List
[int
],List
[List
[int
]],List
[List
[List
[int
]]],List
[List
[List
[List
[int
]]]],Callable
[[int
],str
],Callable
[[int
],List
[List
[int
]]]]- Returns
The entanglement strategy, see
get_entangler_map()
for more detail on how the format is interpreted.
-
entanglement_blocks
¶
-
extension_lib
= 'include "qelib1.inc";'¶
-
feature_dimension
¶ Returns the feature dimension (which is equal to the number of qubits).
- Return type
int
- Returns
The feature dimension of this feature map.
-
global_phase
¶ Return the global phase of the circuit in radians.
-
header
= 'OPENQASM 2.0;'¶
-
initial_state
¶ Return the initial state that is added in front of the n-local circuit.
- Return type
Any
- Returns
The initial state.
-
insert_barriers
¶ If barriers are inserted in between the layers or not.
- Return type
bool
- Returns
True, if barriers are inserted in between the layers, False if not.
-
instances
= 16¶
-
metadata
¶ The user provided metadata associated with the circuit
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
-
num_ancillas
¶ Return the number of ancilla qubits.
-
num_clbits
¶ Return number of classical bits.
-
num_layers
¶ Return the number of layers in the n-local circuit.
- Return type
int
- Returns
The number of layers in the circuit.
-
num_parameters
¶ - Return type
int
-
num_parameters_settable
¶ The number of distinct parameters.
-
num_qubits
¶ Returns the number of qubits in this circuit.
- Return type
int
- Returns
The number of qubits.
-
ordered_parameters
¶ The parameters used in the underlying circuit.
This includes float values and duplicates.
Examples
>>> # prepare circuit ... >>> print(nlocal) ┌───────┐┌──────────┐┌──────────┐┌──────────┐ q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├ └───────┘└──────────┘└──────────┘└──────────┘ >>> nlocal.parameters {Parameter(θ[1]), Parameter(θ[3])} >>> nlocal.ordered_parameters [1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
- Return type
List
[Parameter
]- Returns
The parameters objects used in the circuit.
-
parameter_bounds
¶ The parameter bounds for the unbound parameters in the circuit.
- Return type
Optional
[List
[Tuple
[float
,float
]]]- Returns
A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded parameter in the corresponding direction. If None is returned, problem is fully unbounded.
-
parameters
¶ - Return type
ParameterView
-
paulis
¶ The Pauli strings used in the entanglement of the qubits.
- Return type
List
[str
]- Returns
The Pauli strings as list.
-
preferred_init_points
¶ The initial points for the parameters. Can be stored as initial guess in optimization.
- Return type
Optional
[List
[float
]]- Returns
The initial values for the parameters, or None, if none have been set.
-
prefix
= 'circuit'¶
-
qregs
¶ A list of the quantum registers associated with the circuit.
-
qubits
¶ Returns a list of quantum bits in the order that the registers were added.
-
reps
¶ The number of times rotation and entanglement block are repeated.
- Return type
int
- Returns
The number of repetitions.
-
rotation_blocks
¶ The blocks in the rotation layers.
- Return type
List
[Instruction
]- Returns
The blocks in the rotation layers.