ZZFeatureMap¶
-
class
ZZFeatureMap
(feature_dimension, reps=2, entanglement='full', data_map_func=None, insert_barriers=False, name='ZZFeatureMap')[source]¶ Bases:
qiskit.circuit.library.data_preparation.pauli_feature_map.PauliFeatureMap
Second-order Pauli-Z evolution circuit.
For 3 qubits and 1 repetition and linear entanglement the circuit is represented by:
┌───┐┌─────────────────┐ ┤ H ├┤ U1(2.0*φ(x[0])) ├──■────────────────────────────■──────────────────────────────────── ├───┤├─────────────────┤┌─┴─┐┌──────────────────────┐┌─┴─┐ ┤ H ├┤ U1(2.0*φ(x[1])) ├┤ X ├┤ U1(2.0*φ(x[0],x[1])) ├┤ X ├──■────────────────────────────■── ├───┤├─────────────────┤└───┘└──────────────────────┘└───┘┌─┴─┐┌──────────────────────┐┌─┴─┐ ┤ H ├┤ U1(2.0*φ(x[2])) ├──────────────────────────────────┤ X ├┤ U1(2.0*φ(x[1],x[2])) ├┤ X ├ └───┘└─────────────────┘ └───┘└──────────────────────┘└───┘
where
φ
is a classical non-linear function, which defaults toφ(x) = x
if andφ(x,y) = (pi - x)(pi - y)
.Examples
>>> prep = ZZFeatureMap(2, reps=2) >>> print(prep) ┌───┐┌──────────────┐ q_0: ┤ H ├┤ U1(2.0*x[0]) ├──■───────────────────────────────────────■── ├───┤├──────────────┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐ q_1: ┤ H ├┤ U1(2.0*x[1]) ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├ └───┘└──────────────┘└───┘└─────────────────────────────────┘└───┘
>>> from qiskit.circuit.library import EfficientSU2 >>> classifier = ZZFeatureMap(3) + EfficientSU2(3) >>> classifier.num_parameters 15 >>> classifier.parameters # 'x' for the data preparation, 'θ' for the SU2 parameters {Parameter(θ[9]), Parameter(θ[4]), Parameter(θ[6]), Parameter(θ[1]), Parameter(x[2]), Parameter(θ[7]), Parameter(x[1]), Parameter(θ[8]), Parameter(θ[2]), Parameter(θ[10]), Parameter(θ[5]), Parameter(θ[0]), Parameter(θ[3]), Parameter(x[0]), Parameter(θ[11])} >>> classifier.count_ops() OrderedDict([('u1', 12), ('cx', 12), ('ry', 12), ('cz', 9), ('h', 6)])
Create a new second-order Pauli-Z expansion.
- Parameters
feature_dimension (
int
) – Number of features.reps (
int
) – The number of repeated circuits, has a min. value of 1.entanglement (
Union
[str
,List
[List
[int
]],Callable
[[int
],List
[int
]]]) – Specifies the entanglement structure. Refer toNLocal
for detail.data_map_func (
Optional
[Callable
[[ndarray
],float
]]) – A mapping function for data x.insert_barriers (
bool
) – If True, barriers are inserted in between the evolution instructions and hadamard layers.
- Raises
ValueError – If the feature dimension is smaller than 2.
Attributes
-
alpha
¶ The Pauli rotation factor (alpha).
- Return type
float
- Returns
The Pauli rotation factor.
-
ancillas
¶ Returns a list of ancilla bits in the order that the registers were added.
-
calibrations
¶ Return calibration dictionary.
- The custom pulse definition of a given gate is of the form
{‘gate_name’: {(qubits, params): schedule}}
-
clbits
¶ Returns a list of classical bits in the order that the registers were added.
-
data
¶
-
entanglement
¶ Get the entanglement strategy.
- Return type
Union
[str
,List
[str
],List
[List
[str
]],List
[int
],List
[List
[int
]],List
[List
[List
[int
]]],List
[List
[List
[List
[int
]]]],Callable
[[int
],str
],Callable
[[int
],List
[List
[int
]]]]- Returns
The entanglement strategy, see
get_entangler_map()
for more detail on how the format is interpreted.
-
entanglement_blocks
¶
-
extension_lib
= 'include "qelib1.inc";'¶
-
feature_dimension
¶ Returns the feature dimension (which is equal to the number of qubits).
- Return type
int
- Returns
The feature dimension of this feature map.
-
global_phase
¶ Return the global phase of the circuit in radians.
-
header
= 'OPENQASM 2.0;'¶
-
initial_state
¶ Return the initial state that is added in front of the n-local circuit.
- Return type
Any
- Returns
The initial state.
-
insert_barriers
¶ If barriers are inserted in between the layers or not.
- Return type
bool
- Returns
True, if barriers are inserted in between the layers, False if not.
-
instances
= 16¶
-
metadata
¶ The user provided metadata associated with the circuit
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
-
num_ancillas
¶ Return the number of ancilla qubits.
-
num_clbits
¶ Return number of classical bits.
-
num_layers
¶ Return the number of layers in the n-local circuit.
- Return type
int
- Returns
The number of layers in the circuit.
-
num_parameters
¶ - Return type
int
-
num_parameters_settable
¶ The number of distinct parameters.
-
num_qubits
¶ Returns the number of qubits in this circuit.
- Return type
int
- Returns
The number of qubits.
-
ordered_parameters
¶ The parameters used in the underlying circuit.
This includes float values and duplicates.
Examples
>>> # prepare circuit ... >>> print(nlocal) ┌───────┐┌──────────┐┌──────────┐┌──────────┐ q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├ └───────┘└──────────┘└──────────┘└──────────┘ >>> nlocal.parameters {Parameter(θ[1]), Parameter(θ[3])} >>> nlocal.ordered_parameters [1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
- Return type
List
[Parameter
]- Returns
The parameters objects used in the circuit.
-
parameter_bounds
¶ The parameter bounds for the unbound parameters in the circuit.
- Return type
Optional
[List
[Tuple
[float
,float
]]]- Returns
A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded parameter in the corresponding direction. If None is returned, problem is fully unbounded.
-
parameters
¶ - Return type
ParameterView
-
paulis
¶ The Pauli strings used in the entanglement of the qubits.
- Return type
List
[str
]- Returns
The Pauli strings as list.
-
preferred_init_points
¶ The initial points for the parameters. Can be stored as initial guess in optimization.
- Return type
Optional
[List
[float
]]- Returns
The initial values for the parameters, or None, if none have been set.
-
prefix
= 'circuit'¶
-
qregs
¶ A list of the quantum registers associated with the circuit.
-
qubits
¶ Returns a list of quantum bits in the order that the registers were added.
-
reps
¶ The number of times rotation and entanglement block are repeated.
- Return type
int
- Returns
The number of repetitions.
-
rotation_blocks
¶ The blocks in the rotation layers.
- Return type
List
[Instruction
]- Returns
The blocks in the rotation layers.