qiskit.circuit.library.QuadraticForm¶
-
class
QuadraticForm
(num_result_qubits=None, quadratic=None, linear=None, offset=None, little_endian=True)[source]¶ Implements a quadratic form on binary variables encoded in qubit registers.
A quadratic form on binary variables is a quadratic function \(Q\) acting on a binary variable of \(n\) bits, \(x = x_0 ... x_{n-1}\). For an integer matrix \(A\), an integer vector \(b\) and an integer \(c\) the function can be written as
\[Q(x) = x^T A x + x^T b + c\]If \(A\), \(b\) or \(c\) contain scalar values, this circuit computes only an approximation of the quadratic form.
Provided with \(m\) qubits to encode the value, this circuit computes \(Q(x) \mod 2^m\) in [two’s complement](https://stackoverflow.com/questions/1049722/what-is-2s-complement) representation.
\[|x\rangle_n |0\rangle_m \mapsto |x\rangle_n |(Q(x) + 2^m) \mod 2^m \rangle_m\]Since we use two’s complement e.g. the value of \(Q(x) = 3\) requires 2 bits to represent the value and 1 bit for the sign: 3 = ‘011’ where the first 0 indicates a positive value. On the other hand, \(Q(x) = -3\) would be -3 = ‘101’, where the first 1 indicates a negative value and 01 is the two’s complement of 3.
If the value of \(Q(x)\) is too large to be represented with m qubits, the resulting bitstring is \((Q(x) + 2^m) \mod 2^m)\).
The implementation of this circuit is discussed in [1], Fig. 6.
References
- [1]: Gilliam et al., Grover Adaptive Search for Constrained Polynomial Binary Optimization.
- Parameters
num_result_qubits (
Optional
[int
]) – The number of qubits to encode the result. Called \(m\) in the class documentation.quadratic (
Union
[ndarray
,List
[List
[Union
[float
,ParameterExpression
]]],None
]) – A matrix containing the quadratic coefficients, \(A\).linear (
Union
[ndarray
,List
[Union
[float
,ParameterExpression
]],None
]) – An array containing the linear coefficients, \(b\).offset (
Union
[float
,ParameterExpression
,None
]) – A constant offset, \(c\).little_endian (
bool
) – Encode the result in little endianness.
- Raises
ValueError – If
linear
andquadratic
have mismatching sizes.ValueError – If
num_result_qubits
is unspecified but cannot be determined because some values of the quadratic form are parameterized.
-
__init__
(num_result_qubits=None, quadratic=None, linear=None, offset=None, little_endian=True)[source]¶ - Parameters
num_result_qubits (
Optional
[int
]) – The number of qubits to encode the result. Called \(m\) in the class documentation.quadratic (
Union
[ndarray
,List
[List
[Union
[float
,ParameterExpression
]]],None
]) – A matrix containing the quadratic coefficients, \(A\).linear (
Union
[ndarray
,List
[Union
[float
,ParameterExpression
]],None
]) – An array containing the linear coefficients, \(b\).offset (
Union
[float
,ParameterExpression
,None
]) – A constant offset, \(c\).little_endian (
bool
) – Encode the result in little endianness.
- Raises
ValueError – If
linear
andquadratic
have mismatching sizes.ValueError – If
num_result_qubits
is unspecified but cannot be determined because some values of the quadratic form are parameterized.
Methods
__init__
([num_result_qubits, quadratic, …])- type num_result_qubits
Optional
[int
]
add_bits
(bits)Add Bits to the circuit.
add_calibration
(gate, qubits, schedule[, params])Register a low-level, custom pulse definition for the given gate.
add_register
(*regs)Add registers.
append
(instruction[, qargs, cargs])Append one or more instructions to the end of the circuit, modifying the circuit in place.
assign_parameters
(parameters[, inplace, …])Assign parameters to new parameters or values.
barrier
(*qargs)Apply
Barrier
.bind_parameters
(values[, value_dict])Assign numeric parameters to values yielding a new circuit.
cast
(value, _type)Best effort to cast value to type.
cbit_argument_conversion
(clbit_representation)Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits.
ccx
(control_qubit1, control_qubit2, target_qubit)Apply
CCXGate
.ch
(control_qubit, target_qubit[, label, …])Apply
CHGate
.Return the current number of instances of this class, useful for auto naming.
Return the prefix to use for auto naming.
cnot
(control_qubit, target_qubit[, label, …])Apply
CXGate
.combine
(rhs)DEPRECATED - Returns rhs appended to self if self contains compatible registers.
compose
(other[, qubits, clbits, front, inplace])Compose circuit with
other
circuit or instruction, optionally permuting wires.control
([num_ctrl_qubits, label, ctrl_state])Control this circuit on
num_ctrl_qubits
qubits.copy
([name])Copy the circuit.
Count each operation kind in the circuit.
cp
(theta, control_qubit, target_qubit[, …])Apply
CPhaseGate
.crx
(theta, control_qubit, target_qubit[, …])Apply
CRXGate
.cry
(theta, control_qubit, target_qubit[, …])Apply
CRYGate
.crz
(theta, control_qubit, target_qubit[, …])Apply
CRZGate
.cswap
(control_qubit, target_qubit1, …[, …])Apply
CSwapGate
.csx
(control_qubit, target_qubit[, label, …])Apply
CSXGate
.cu
(theta, phi, lam, gamma, control_qubit, …)Apply
CUGate
.cu1
(theta, control_qubit, target_qubit[, …])Apply
CU1Gate
.cu3
(theta, phi, lam, control_qubit, target_qubit)Apply
CU3Gate
.cx
(control_qubit, target_qubit[, label, …])Apply
CXGate
.cy
(control_qubit, target_qubit[, label, …])Apply
CYGate
.cz
(control_qubit, target_qubit[, label, …])Apply
CZGate
.dcx
(qubit1, qubit2)Apply
DCXGate
.Call a decomposition pass on this circuit, to decompose one level (shallow decompose).
delay
(duration[, qarg, unit])Apply
Delay
.depth
()Return circuit depth (i.e., length of critical path).
diagonal
(diag, qubit)Attach a diagonal gate to a circuit.
draw
([output, scale, filename, style, …])Draw the quantum circuit.
ecr
(qubit1, qubit2)Apply
ECRGate
.extend
(rhs)DEPRECATED - Append QuantumCircuit to the RHS if it contains compatible registers.
fredkin
(control_qubit, target_qubit1, …)Apply
CSwapGate
.from_qasm_file
(path)Take in a QASM file and generate a QuantumCircuit object.
from_qasm_str
(qasm_str)Take in a QASM string and generate a QuantumCircuit object.
h
(qubit)Apply
HGate
.hamiltonian
(operator, time, qubits[, label])Apply hamiltonian evolution to qubits.
has_register
(register)Test if this circuit has the register r.
i
(qubit)Apply
IGate
.id
(qubit)Apply
IGate
.initialize
(params[, qubits])Initialize qubits in a specific state.
inverse
()Invert (take adjoint of) this circuit.
iso
(isometry, q_input, q_ancillas_for_output)Attach an arbitrary isometry from m to n qubits to a circuit.
isometry
(isometry, q_input, …[, …])Attach an arbitrary isometry from m to n qubits to a circuit.
iswap
(qubit1, qubit2)Apply
iSwapGate
.mcp
(lam, control_qubits, target_qubit)Apply
MCPhaseGate
.mcrx
(theta, q_controls, q_target[, …])Apply Multiple-Controlled X rotation gate
mcry
(theta, q_controls, q_target[, …])Apply Multiple-Controlled Y rotation gate
mcrz
(lam, q_controls, q_target[, …])Apply Multiple-Controlled Z rotation gate
mct
(control_qubits, target_qubit[, …])Apply
MCXGate
.mcu1
(lam, control_qubits, target_qubit)Apply
MCU1Gate
.mcx
(control_qubits, target_qubit[, …])Apply
MCXGate
.measure
(qubit, cbit)Measure quantum bit into classical bit (tuples).
measure_active
([inplace])Adds measurement to all non-idle qubits.
measure_all
([inplace])Adds measurement to all qubits.
ms
(theta, qubits)Apply
MSGate
.num_connected_components
([unitary_only])How many non-entangled subcircuits can the circuit be factored to.
Return number of non-local gates (i.e.
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
p
(theta, qubit)Apply
PhaseGate
.pauli
(pauli_string, qubits)Apply
PauliGate
.power
(power[, matrix_power])Raise this circuit to the power of
power
.qasm
([formatted, filename])Return OpenQASM string.
qbit_argument_conversion
(qubit_representation)Converts several qubit representations (such as indexes, range, etc.) into a list of qubits.
qubit_duration
(*qubits)Return the duration between the start and stop time of the first and last instructions, excluding delays, over the supplied qubits.
qubit_start_time
(*qubits)Return the start time of the first instruction, excluding delays, over the supplied qubits.
qubit_stop_time
(*qubits)Return the stop time of the last instruction, excluding delays, over the supplied qubits.
r
(theta, phi, qubit)Apply
RGate
.rcccx
(control_qubit1, control_qubit2, …)Apply
RC3XGate
.rccx
(control_qubit1, control_qubit2, …)Apply
RCCXGate
.remove_final_measurements
([inplace])Removes final measurement on all qubits if they are present.
repeat
(reps)Repeat this circuit
reps
times.required_result_qubits
(quadratic, linear, offset)Get the number of required result qubits.
reset
(qubit)Reset q.
Return a circuit with the opposite order of wires.
Reverse the circuit by reversing the order of instructions.
rv
(vx, vy, vz, qubit)Apply
RVGate
.rx
(theta, qubit[, label])Apply
RXGate
.rxx
(theta, qubit1, qubit2)Apply
RXXGate
.ry
(theta, qubit[, label])Apply
RYGate
.ryy
(theta, qubit1, qubit2)Apply
RYYGate
.rz
(phi, qubit)Apply
RZGate
.rzx
(theta, qubit1, qubit2)Apply
RZXGate
.rzz
(theta, qubit1, qubit2)Apply
RZZGate
.s
(qubit)Apply
SGate
.save_amplitudes
(params[, label, pershot, …])Save complex statevector amplitudes.
save_amplitudes_squared
(params[, label, …])Save squared statevector amplitudes (probabilities).
save_density_matrix
([qubits, label, …])Save the current simulator quantum state as a density matrix.
save_expectation_value
(operator, qubits[, …])Save the expectation value of a Hermitian operator.
save_expectation_value_variance
(operator, qubits)Save the expectation value of a Hermitian operator.
save_matrix_product_state
([label, pershot, …])Save the current simulator quantum state as a matrix product state.
save_probabilities
([qubits, label, …])Save measurement outcome probabilities vector.
save_probabilities_dict
([qubits, label, …])Save measurement outcome probabilities vector.
save_stabilizer
([label, pershot, conditional])Save the current stabilizer simulator quantum state as a Clifford.
save_state
([label, pershot, conditional])Save the current simulator quantum state.
save_statevector
([label, pershot, conditional])Save the current simulator quantum state as a statevector.
save_statevector_dict
([label, pershot, …])Save the current simulator quantum state as a statevector as a dict.
save_superop
([label, pershot])Save the current state of the superop simulator.
save_unitary
([label, pershot])Save the current state of the unitary simulator.
sdg
(qubit)Apply
SdgGate
.set_density_matrix
(state)Set the density matrix state of the simulator.
set_matrix_product_state
(state)Set the matrix product state of the simulator.
set_stabilizer
(state)Set the Clifford stabilizer state of the simulator.
set_statevector
(state)Set the statevector state of the simulator.
set_superop
(state)Set the superop state of the simulator.
set_unitary
(state)Set the state state of the simulator.
size
()Returns total number of gate operations in circuit.
snapshot
(label[, snapshot_type, qubits, params])Take a statevector snapshot of the internal simulator representation.
snapshot_density_matrix
(label[, qubits])Take a density matrix snapshot of simulator state.
snapshot_expectation_value
(label, op, qubits)Take a snapshot of expectation value <O> of an Operator.
snapshot_probabilities
(label, qubits[, variance])Take a probability snapshot of the simulator state.
snapshot_stabilizer
(label)Take a stabilizer snapshot of the simulator state.
snapshot_statevector
(label)Take a statevector snapshot of the simulator state.
squ
(unitary_matrix, qubit[, mode, …])Decompose an arbitrary 2*2 unitary into three rotation gates.
swap
(qubit1, qubit2)Apply
SwapGate
.sx
(qubit)Apply
SXGate
.sxdg
(qubit)Apply
SXdgGate
.t
(qubit)Apply
TGate
.tdg
(qubit)Apply
TdgGate
.tensor
(other[, inplace])Tensor
self
withother
.to_gate
([parameter_map, label])Create a Gate out of this circuit.
to_instruction
([parameter_map])Create an Instruction out of this circuit.
toffoli
(control_qubit1, control_qubit2, …)Apply
CCXGate
.u
(theta, phi, lam, qubit)Apply
UGate
.u1
(theta, qubit)Apply
U1Gate
.u2
(phi, lam, qubit)Apply
U2Gate
.u3
(theta, phi, lam, qubit)Apply
U3Gate
.uc
(gate_list, q_controls, q_target[, …])Attach a uniformly controlled gates (also called multiplexed gates) to a circuit.
ucrx
(angle_list, q_controls, q_target)Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit.
ucry
(angle_list, q_controls, q_target)Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit.
ucrz
(angle_list, q_controls, q_target)Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit.
unitary
(obj, qubits[, label])Apply unitary gate to q.
width
()Return number of qubits plus clbits in circuit.
x
(qubit[, label])Apply
XGate
.y
(qubit)Apply
YGate
.z
(qubit)Apply
ZGate
.Attributes
Returns a list of ancilla bits in the order that the registers were added.
Return calibration dictionary.
Returns a list of classical bits in the order that the registers were added.
Return the circuit data (instructions and context).
extension_lib
Return the global phase of the circuit in radians.
header
instances
The user provided metadata associated with the circuit
Return the number of ancilla qubits.
Return number of classical bits.
Convenience function to get the number of parameter objects in the circuit.
Return number of qubits.
Convenience function to get the parameters defined in the parameter table.
prefix
Returns a list of quantum bits in the order that the registers were added.
-
add_bits
(bits)¶ Add Bits to the circuit.
-
add_calibration
(gate, qubits, schedule, params=None)¶ Register a low-level, custom pulse definition for the given gate.
- Parameters
- Raises
Exception – if the gate is of type string and params is None.
-
add_register
(*regs)¶ Add registers.
-
property
ancillas
¶ Returns a list of ancilla bits in the order that the registers were added.
-
append
(instruction, qargs=None, cargs=None)¶ Append one or more instructions to the end of the circuit, modifying the circuit in place. Expands qargs and cargs.
- Parameters
instruction (qiskit.circuit.Instruction) – Instruction instance to append
qargs (list(argument)) – qubits to attach instruction to
cargs (list(argument)) – clbits to attach instruction to
- Returns
a handle to the instruction that was just added
- Return type
- Raises
CircuitError – if object passed is a subclass of Instruction
CircuitError – if object passed is neither subclass nor an instance of Instruction
-
assign_parameters
(parameters, inplace=False, param_dict=None)¶ Assign parameters to new parameters or values.
The keys of the parameter dictionary must be Parameter instances in the current circuit. The values of the dictionary can either be numeric values or new parameter objects. The values can be assigned to the current circuit object or to a copy of it.
- Parameters
parameters (dict or iterable) – Either a dictionary or iterable specifying the new parameter values. If a dict, it specifies the mapping from
current_parameter
tonew_parameter
, wherenew_parameter
can be a new parameter object or a numeric value. If an iterable, the elements are assigned to the existing parameters in the order they were inserted. You can callQuantumCircuit.parameters
to check this order.inplace (bool) – If False, a copy of the circuit with the bound parameters is returned. If True the circuit instance itself is modified.
param_dict (dict) – Deprecated, use
parameters
instead.
- Raises
CircuitError – If parameters is a dict and contains parameters not present in the circuit.
ValueError – If parameters is a list/array and the length mismatches the number of free parameters in the circuit.
- Returns
A copy of the circuit with bound parameters, if
inplace
is True, otherwise None.- Return type
Optional(QuantumCircuit)
Examples
Create a parameterized circuit and assign the parameters in-place.
from qiskit.circuit import QuantumCircuit, Parameter circuit = QuantumCircuit(2) params = [Parameter('A'), Parameter('B'), Parameter('C')] circuit.ry(params[0], 0) circuit.crx(params[1], 0, 1) print('Original circuit:') print(circuit.draw()) circuit.assign_parameters({params[0]: params[2]}, inplace=True) print('Assigned in-place:') print(circuit.draw())
Original circuit: ┌───────┐ q_0: ┤ RY(A) ├────■──── └───────┘┌───┴───┐ q_1: ─────────┤ RX(B) ├ └───────┘ Assigned in-place: ┌───────┐ q_0: ┤ RY(C) ├────■──── └───────┘┌───┴───┐ q_1: ─────────┤ RX(B) ├ └───────┘
Bind the values out-of-place and get a copy of the original circuit.
from qiskit.circuit import QuantumCircuit, ParameterVector circuit = QuantumCircuit(2) params = ParameterVector('P', 2) circuit.ry(params[0], 0) circuit.crx(params[1], 0, 1) bound_circuit = circuit.assign_parameters({params[0]: 1, params[1]: 2}) print('Bound circuit:') print(bound_circuit.draw()) print('The original circuit is unchanged:') print(circuit.draw())
Bound circuit: ┌───────┐ q_0: ┤ RY(1) ├────■──── └───────┘┌───┴───┐ q_1: ─────────┤ RX(2) ├ └───────┘ The original circuit is unchanged: ┌──────────┐ q_0: ┤ RY(P[0]) ├─────■────── └──────────┘┌────┴─────┐ q_1: ────────────┤ RX(P[1]) ├ └──────────┘
-
barrier
(*qargs)¶ Apply
Barrier
. If qargs is None, applies to all.
-
bind_parameters
(values, value_dict=None)¶ Assign numeric parameters to values yielding a new circuit.
To assign new Parameter objects or bind the values in-place, without yielding a new circuit, use the
assign_parameters()
method.- Parameters
values (dict or iterable) – {parameter: value, …} or [value1, value2, …]
value_dict (dict) – Deprecated, use
values
instead.
- Raises
CircuitError – If values is a dict and contains parameters not present in the circuit.
TypeError – If values contains a ParameterExpression.
- Returns
copy of self with assignment substitution.
- Return type
-
property
calibrations
¶ Return calibration dictionary.
- The custom pulse definition of a given gate is of the form
{‘gate_name’: {(qubits, params): schedule}}
-
static
cast
(value, _type)¶ Best effort to cast value to type. Otherwise, returns the value.
-
cbit_argument_conversion
(clbit_representation)¶ Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits.
- Parameters
clbit_representation (Object) – representation to expand
- Returns
Where each tuple is a classical bit.
- Return type
List(tuple)
-
property
clbits
¶ Returns a list of classical bits in the order that the registers were added.
-
classmethod
cls_instances
()¶ Return the current number of instances of this class, useful for auto naming.
-
classmethod
cls_prefix
()¶ Return the prefix to use for auto naming.
-
combine
(rhs)¶ DEPRECATED - Returns rhs appended to self if self contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Return self + rhs as a new object.
- Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
- Returns
Returns a new QuantumCircuit object
- Return type
- Raises
QiskitError – if the rhs circuit is not compatible
-
compose
(other, qubits=None, clbits=None, front=False, inplace=False)¶ Compose circuit with
other
circuit or instruction, optionally permuting wires.other
can be narrower or of equal width toself
.- Parameters
other (qiskit.circuit.Instruction or QuantumCircuit or BaseOperator) – (sub)circuit to compose onto self.
qubits (list[Qubit|int]) – qubits of self to compose onto.
clbits (list[Clbit|int]) – clbits of self to compose onto.
front (bool) – If True, front composition will be performed (not implemented yet).
inplace (bool) – If True, modify the object. Otherwise return composed circuit.
- Returns
the composed circuit (returns None if inplace==True).
- Return type
- Raises
CircuitError – if composing on the front.
QiskitError – if
other
is wider or there are duplicate edge mappings.
Examples:
lhs.compose(rhs, qubits=[3, 2], inplace=True) .. parsed-literal:: ┌───┐ ┌─────┐ ┌───┐ lqr_1_0: ───┤ H ├─── rqr_0: ──■──┤ Tdg ├ lqr_1_0: ───┤ H ├─────────────── ├───┤ ┌─┴─┐└─────┘ ├───┤ lqr_1_1: ───┤ X ├─── rqr_1: ┤ X ├─────── lqr_1_1: ───┤ X ├─────────────── ┌──┴───┴──┐ └───┘ ┌──┴───┴──┐┌───┐ lqr_1_2: ┤ U1(0.1) ├ + = lqr_1_2: ┤ U1(0.1) ├┤ X ├─────── └─────────┘ └─────────┘└─┬─┘┌─────┐ lqr_2_0: ─────■───── lqr_2_0: ─────■───────■──┤ Tdg ├ ┌─┴─┐ ┌─┴─┐ └─────┘ lqr_2_1: ───┤ X ├─── lqr_2_1: ───┤ X ├─────────────── └───┘ └───┘ lcr_0: 0 ═══════════ lcr_0: 0 ═══════════════════════ lcr_1: 0 ═══════════ lcr_1: 0 ═══════════════════════
-
control
(num_ctrl_qubits=1, label=None, ctrl_state=None)¶ Control this circuit on
num_ctrl_qubits
qubits.- Parameters
num_ctrl_qubits (int) – The number of control qubits.
label (str) – An optional label to give the controlled operation for visualization.
ctrl_state (str or int) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use
2**num_ctrl_qubits - 1
.
- Returns
The controlled version of this circuit.
- Return type
- Raises
CircuitError – If the circuit contains a non-unitary operation and cannot be controlled.
-
copy
(name=None)¶ Copy the circuit.
- Parameters
name (str) – name to be given to the copied circuit. If None, then the name stays the same
- Returns
a deepcopy of the current circuit, with the specified name
- Return type
-
count_ops
()¶ Count each operation kind in the circuit.
- Returns
a breakdown of how many operations of each kind, sorted by amount.
- Return type
OrderedDict
-
cp
(theta, control_qubit, target_qubit, label=None, ctrl_state=None)¶ Apply
CPhaseGate
.
-
property
data
¶ Return the circuit data (instructions and context).
- Returns
a list-like object containing the tuples for the circuit’s data.
Each tuple is in the format
(instruction, qargs, cargs)
, where instruction is an Instruction (or subclass) object, qargs is a list of Qubit objects, and cargs is a list of Clbit objects.- Return type
QuantumCircuitData
-
decompose
()¶ Call a decomposition pass on this circuit, to decompose one level (shallow decompose).
- Returns
a circuit one level decomposed
- Return type
-
delay
(duration, qarg=None, unit='dt')¶ Apply
Delay
. If qarg is None, applies to all qubits. When applying to multiple qubits, delays with the same duration will be created.- Parameters
duration (int or float) – duration of the delay.
qarg (Object) – qubit argument to apply this delay.
unit (str) – unit of the duration. Supported units: ‘s’, ‘ms’, ‘us’, ‘ns’, ‘ps’, ‘dt’. Default is
dt
, i.e. integer time unit depending on the target backend.
- Returns
the attached delay instruction.
- Return type
qiskit.Instruction
- Raises
CircuitError – if arguments have bad format.
-
depth
()¶ Return circuit depth (i.e., length of critical path). This does not include compiler or simulator directives such as ‘barrier’ or ‘snapshot’.
- Returns
Depth of circuit.
- Return type
int
Notes
The circuit depth and the DAG depth need not be the same.
-
diagonal
(diag, qubit)¶ Attach a diagonal gate to a circuit.
The decomposition is based on Theorem 7 given in “Synthesis of Quantum Logic Circuits” by Shende et al. (https://arxiv.org/pdf/quant-ph/0406176.pdf).
- Parameters
diag (list) – list of the 2^k diagonal entries (for a diagonal gate on k qubits). Must contain at least two entries
qubit (QuantumRegister|list) – list of k qubits the diagonal is acting on (the order of the qubits specifies the computational basis in which the diagonal gate is provided: the first element in diag acts on the state where all the qubits in q are in the state 0, the second entry acts on the state where all the qubits q[1],…,q[k-1] are in the state zero and q[0] is in the state 1, and so on)
- Returns
the diagonal gate which was attached to the circuit.
- Return type
- Raises
QiskitError – if the list of the diagonal entries or the qubit list is in bad format; if the number of diagonal entries is not 2^k, where k denotes the number of qubits
-
draw
(output=None, scale=None, filename=None, style=None, interactive=False, plot_barriers=True, reverse_bits=False, justify=None, vertical_compression='medium', idle_wires=True, with_layout=True, fold=None, ax=None, initial_state=False, cregbundle=True)¶ Draw the quantum circuit. Use the output parameter to choose the drawing format:
text: ASCII art TextDrawing that can be printed in the console.
matplotlib: images with color rendered purely in Python.
latex: high-quality images compiled via latex.
latex_source: raw uncompiled latex output.
- Parameters
output (str) – select the output method to use for drawing the circuit. Valid choices are
text
,mpl
,latex
,latex_source
. By default the text drawer is used unless the user config file (usually~/.qiskit/settings.conf
) has an alternative backend set as the default. For example,circuit_drawer = latex
. If the output kwarg is set, that backend will always be used over the default in the user config file.scale (float) – scale of image to draw (shrink if < 1.0). Only used by the mpl, latex and latex_source outputs. Defaults to 1.0.
filename (str) – file path to save image to. Defaults to None.
style (dict or str) – dictionary of style or file name of style json file. This option is only used by the mpl output type. If style is a str, it is used as the path to a json file which contains a style dict. The file will be opened, parsed, and then any style elements in the dict will replace the default values in the input dict. A file to be loaded must end in
.json
, but the name entered here can omit.json
. For example,style='iqx.json'
orstyle='iqx'
. If style is a dict and the'name'
key is set, that name will be used to load a json file, followed by loading the other items in the style dict. For example,style={'name': 'iqx'}
. If style is not a str and name is not a key in the style dict, then the default value from the user config file (usually~/.qiskit/settings.conf
) will be used, for example,circuit_mpl_style = iqx
. If none of these are set, the default style will be used. The search path for style json files can be specified in the user config, for example,circuit_mpl_style_path = /home/user/styles:/home/user
. See:DefaultStyle
for more information on the contents.interactive (bool) – when set to true, show the circuit in a new window (for mpl this depends on the matplotlib backend being used supporting this). Note when used with either the text or the latex_source output type this has no effect and will be silently ignored. Defaults to False.
reverse_bits (bool) – when set to True, reverse the bit order inside registers for the output visualization. Defaults to False.
plot_barriers (bool) – enable/disable drawing barriers in the output circuit. Defaults to True.
justify (string) – options are
left
,right
ornone
. If anything else is supplied, it defaults to left justified. It refers to where gates should be placed in the output circuit if there is an option.none
results in each gate being placed in its own column.vertical_compression (string) –
high
,medium
orlow
. It merges the lines generated by the text output so the drawing will take less vertical room. Default ismedium
. Only used by the text output, will be silently ignored otherwise.idle_wires (bool) – include idle wires (wires with no circuit elements) in output visualization. Default is True.
with_layout (bool) – include layout information, with labels on the physical layout. Default is True.
fold (int) – sets pagination. It can be disabled using -1. In text, sets the length of the lines. This is useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using
shutil.get_terminal_size()
. However, if running in jupyter, the default line length is set to 80 characters. In mpl, it is the number of (visual) layers before folding. Default is 25.ax (matplotlib.axes.Axes) – Only used by the mpl backend. An optional Axes object to be used for the visualization output. If none is specified, a new matplotlib Figure will be created and used. Additionally, if specified there will be no returned Figure since it is redundant.
initial_state (bool) – optional. Adds
|0>
in the beginning of the wire. Default is False.cregbundle (bool) – optional. If set True, bundle classical registers. Default is True.
- Returns
TextDrawing
ormatplotlib.figure
orPIL.Image
orstr
:- TextDrawing (output=’text’)
A drawing that can be printed as ascii art.
- matplotlib.figure.Figure (output=’mpl’)
A matplotlib figure object for the circuit diagram.
- PIL.Image (output=’latex’)
An in-memory representation of the image of the circuit diagram.
- str (output=’latex_source’)
The LaTeX source code for visualizing the circuit diagram.
- Raises
VisualizationError – when an invalid output method is selected
ImportError – when the output methods requires non-installed libraries.
Example
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.tools.visualization import circuit_drawer q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
-
extend
(rhs)¶ DEPRECATED - Append QuantumCircuit to the RHS if it contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Modify and return self.
- Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
- Returns
Returns this QuantumCircuit object (which has been modified)
- Return type
- Raises
QiskitError – if the rhs circuit is not compatible
-
static
from_qasm_file
(path)¶ Take in a QASM file and generate a QuantumCircuit object.
- Parameters
path (str) – Path to the file for a QASM program
- Returns
The QuantumCircuit object for the input QASM
- Return type
-
static
from_qasm_str
(qasm_str)¶ Take in a QASM string and generate a QuantumCircuit object.
- Parameters
qasm_str (str) – A QASM program string
- Returns
The QuantumCircuit object for the input QASM
- Return type
-
property
global_phase
¶ Return the global phase of the circuit in radians.
-
hamiltonian
(operator, time, qubits, label=None)¶ Apply hamiltonian evolution to qubits.
-
has_register
(register)¶ Test if this circuit has the register r.
- Parameters
register (Register) – a quantum or classical register.
- Returns
True if the register is contained in this circuit.
- Return type
bool
-
initialize
(params, qubits=None)¶ Initialize qubits in a specific state.
Qubit initialization is done by first resetting the qubits to \(|0\rangle\) followed by an state preparing unitary. Both these steps are included in the Initialize instruction.
- Parameters
params (str or list or int) –
- str: labels of basis states of the Pauli eigenstates Z, X, Y. See
from_label()
. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label ‘01’ initializes the qubit zero to |1> and the qubit one to |0>.
list: vector of complex amplitudes to initialize to.
- int: an integer that is used as a bitmap indicating which qubits to initialize
to |1>. Example: setting params to 5 would initialize qubit 0 and qubit 2 to |1> and qubit 1 to |0>.
qubits (QuantumRegister or int) –
QuantumRegister: A list of qubits to be initialized [Default: None].
int: Index of qubit to initialized [Default: None].
- Returns
a handle to the instruction that was just initialized
- Return type
Examples
Prepare a qubit in the state \((|0\rangle - |1\rangle) / \sqrt{2}\).
import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(1) circuit.initialize([1/np.sqrt(2), -1/np.sqrt(2)], 0) circuit.draw()
┌──────────────────────────────┐ q_0: ┤ initialize(0.70711,-0.70711) ├ └──────────────────────────────┘
- output:
┌──────────────────────────────┐
- q_0: ┤ initialize(0.70711,-0.70711) ├
└──────────────────────────────┘
Initialize from a string two qubits in the state |10>. The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in
from_label()
.import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.initialize('01', circuit.qubits) circuit.draw()
┌──────────────────┐ q_0: ┤0 ├ │ initialize(0,1) │ q_1: ┤1 ├ └──────────────────┘
- output:
┌──────────────────┐
- q_0: ┤0 ├
│ initialize(0,1) │
- q_1: ┤1 ├
└──────────────────┘
Initialize two qubits from an array of complex amplitudes .. jupyter-execute:
import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.initialize([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits) circuit.draw()
- output:
┌────────────────────────────────────┐
- q_0: ┤0 ├
│ initialize(0,0.70711,-0.70711j,0) │
- q_1: ┤1 ├
└────────────────────────────────────┘
-
inverse
()¶ Invert (take adjoint of) this circuit.
This is done by recursively inverting all gates.
- Returns
the inverted circuit
- Return type
- Raises
CircuitError – if the circuit cannot be inverted.
Examples
- input:
┌───┐
- q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
- q_1: ─────┤ RX(1.57) ├
└──────────┘
- output:
┌───┐
- q_0: ──────■──────┤ H ├
┌─────┴─────┐└───┘
- q_1: ┤ RX(-1.57) ├─────
└───────────┘
-
iso
(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None)¶ Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
- Parameters
isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
- Returns
the isometry is attached to the quantum circuit.
- Return type
- Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
-
isometry
(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None)¶ Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
- Parameters
isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
- Returns
the isometry is attached to the quantum circuit.
- Return type
- Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
-
mcp
(lam, control_qubits, target_qubit)¶ Apply
MCPhaseGate
.
-
mcrx
(theta, q_controls, q_target, use_basis_gates=False)¶ Apply Multiple-Controlled X rotation gate
- Parameters
self (QuantumCircuit) – The QuantumCircuit object to apply the mcrx gate on.
theta (float) – angle theta
q_controls (list(Qubit)) – The list of control qubits
q_target (Qubit) – The target qubit
use_basis_gates (bool) – use p, u, cx
- Raises
QiskitError – parameter errors
-
mcry
(theta, q_controls, q_target, q_ancillae=None, mode=None, use_basis_gates=False)¶ Apply Multiple-Controlled Y rotation gate
- Parameters
self (QuantumCircuit) – The QuantumCircuit object to apply the mcry gate on.
theta (float) – angle theta
q_controls (list(Qubit)) – The list of control qubits
q_target (Qubit) – The target qubit
q_ancillae (QuantumRegister or tuple(QuantumRegister, int)) – The list of ancillary qubits.
mode (string) – The implementation mode to use
use_basis_gates (bool) – use p, u, cx
- Raises
QiskitError – parameter errors
-
mcrz
(lam, q_controls, q_target, use_basis_gates=False)¶ Apply Multiple-Controlled Z rotation gate
- Parameters
self (QuantumCircuit) – The QuantumCircuit object to apply the mcrz gate on.
lam (float) – angle lambda
q_controls (list(Qubit)) – The list of control qubits
q_target (Qubit) – The target qubit
use_basis_gates (bool) – use p, u, cx
- Raises
QiskitError – parameter errors
-
mcu1
(lam, control_qubits, target_qubit)¶ Apply
MCU1Gate
.
-
mcx
(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')¶ Apply
MCXGate
.The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are: - ‘noancilla’: Requires 0 ancilla qubits. - ‘recursion’: Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0. - ‘v-chain’: Requires 2 less ancillas than the number of control qubits. - ‘v-chain-dirty’: Same as for the clean ancillas (but the circuit will be longer).
-
measure
(qubit, cbit)¶ Measure quantum bit into classical bit (tuples).
- Parameters
qubit (QuantumRegister|list|tuple) – quantum register
cbit (ClassicalRegister|list|tuple) – classical register
- Returns
the attached measure instruction.
- Return type
qiskit.Instruction
- Raises
CircuitError – if qubit is not in this circuit or bad format; if cbit is not in this circuit or not creg.
-
measure_active
(inplace=True)¶ Adds measurement to all non-idle qubits. Creates a new ClassicalRegister with a size equal to the number of non-idle qubits being measured.
Returns a new circuit with measurements if inplace=False.
- Parameters
inplace (bool) – All measurements inplace or return new circuit.
- Returns
Returns circuit with measurements when inplace = False.
- Return type
-
measure_all
(inplace=True)¶ Adds measurement to all qubits. Creates a new ClassicalRegister with a size equal to the number of qubits being measured.
Returns a new circuit with measurements if inplace=False.
- Parameters
inplace (bool) – All measurements inplace or return new circuit.
- Returns
Returns circuit with measurements when inplace = False.
- Return type
-
property
metadata
¶ The user provided metadata associated with the circuit
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
-
property
num_ancillas
¶ Return the number of ancilla qubits.
-
property
num_clbits
¶ Return number of classical bits.
-
num_connected_components
(unitary_only=False)¶ How many non-entangled subcircuits can the circuit be factored to.
- Parameters
unitary_only (bool) – Compute only unitary part of graph.
- Returns
Number of connected components in circuit.
- Return type
int
-
num_nonlocal_gates
()¶ Return number of non-local gates (i.e. involving 2+ qubits).
Conditional nonlocal gates are also included.
-
property
num_parameters
¶ Convenience function to get the number of parameter objects in the circuit.
-
property
num_qubits
¶ Return number of qubits.
-
num_tensor_factors
()¶ Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
Notes
This is here for backwards compatibility, and will be removed in a future release of Qiskit. You should call num_unitary_factors instead.
-
num_unitary_factors
()¶ Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
-
property
parameters
¶ Convenience function to get the parameters defined in the parameter table.
-
pauli
(pauli_string, qubits)¶ Apply
PauliGate
.
-
power
(power, matrix_power=False)¶ Raise this circuit to the power of
power
.If
power
is a positive integer andmatrix_power
isFalse
, this implementation defaults to callingrepeat
. Otherwise, if the circuit is unitary, the matrix is computed to calculate the matrix power.- Parameters
power (int) – The power to raise this circuit to.
matrix_power (bool) – If True, the circuit is converted to a matrix and then the matrix power is computed. If False, and
power
is a positive integer, the implementation defaults torepeat
.
- Raises
CircuitError – If the circuit needs to be converted to a gate but it is not unitary.
- Returns
A circuit implementing this circuit raised to the power of
power
.- Return type
-
qasm
(formatted=False, filename=None)¶ Return OpenQASM string.
- Parameters
formatted (bool) – Return formatted Qasm string.
filename (str) – Save Qasm to file with name ‘filename’.
- Returns
If formatted=False.
- Return type
str
- Raises
ImportError – If pygments is not installed and
formatted
isTrue
.QasmError – If circuit has free parameters.
-
qbit_argument_conversion
(qubit_representation)¶ Converts several qubit representations (such as indexes, range, etc.) into a list of qubits.
- Parameters
qubit_representation (Object) – representation to expand
- Returns
Where each tuple is a qubit.
- Return type
List(tuple)
-
qubit_duration
(*qubits)¶ Return the duration between the start and stop time of the first and last instructions, excluding delays, over the supplied qubits. Its time unit is
self.unit
.- Parameters
*qubits – Qubits within
self
to include.- Return type
Union
[int
,float
]- Returns
Return the duration between the first start and last stop time of non-delay instructions
-
qubit_start_time
(*qubits)¶ Return the start time of the first instruction, excluding delays, over the supplied qubits. Its time unit is
self.unit
.Return 0 if there are no instructions over qubits
- Parameters
*qubits – Qubits within
self
to include. Integers are allowed for qubits, indicatingof self.qubits. (indices) –
- Return type
Union
[int
,float
]- Returns
Return the start time of the first instruction, excluding delays, over the qubits
- Raises
CircuitError – if
self
is a not-yet scheduled circuit.
-
qubit_stop_time
(*qubits)¶ Return the stop time of the last instruction, excluding delays, over the supplied qubits. Its time unit is
self.unit
.Return 0 if there are no instructions over qubits
- Parameters
*qubits – Qubits within
self
to include. Integers are allowed for qubits, indicatingof self.qubits. (indices) –
- Return type
Union
[int
,float
]- Returns
Return the stop time of the last instruction, excluding delays, over the qubits
- Raises
CircuitError – if
self
is a not-yet scheduled circuit.
-
property
qubits
¶ Returns a list of quantum bits in the order that the registers were added.
-
remove_final_measurements
(inplace=True)¶ Removes final measurement on all qubits if they are present. Deletes the ClassicalRegister that was used to store the values from these measurements if it is idle.
Returns a new circuit without measurements if inplace=False.
- Parameters
inplace (bool) – All measurements removed inplace or return new circuit.
- Returns
Returns circuit with measurements removed when inplace = False.
- Return type
-
repeat
(reps)¶ Repeat this circuit
reps
times.- Parameters
reps (int) – How often this circuit should be repeated.
- Returns
A circuit containing
reps
repetitions of this circuit.- Return type
-
static
required_result_qubits
(quadratic, linear, offset)[source]¶ Get the number of required result qubits.
- Parameters
quadratic (
Union
[ndarray
,List
[List
[float
]]]) – A matrix containing the quadratic coefficients.linear (
Union
[ndarray
,List
[float
]]) – An array containing the linear coefficients.offset (
float
) – A constant offset.
- Return type
int
- Returns
The number of qubits needed to represent the value of the quadratic form in twos complement.
-
reset
(qubit)¶ Reset q.
-
reverse_bits
()¶ Return a circuit with the opposite order of wires.
The circuit is “vertically” flipped. If a circuit is defined over multiple registers, the resulting circuit will have the same registers but with their order flipped.
This method is useful for converting a circuit written in little-endian convention to the big-endian equivalent, and vice versa.
- Returns
the circuit with reversed bit order.
- Return type
Examples
- input:
┌───┐
- q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
- q_1: ─────┤ RX(1.57) ├
└──────────┘
- output:
┌──────────┐
- q_0: ─────┤ RX(1.57) ├
┌───┐└────┬─────┘
- q_1: ┤ H ├─────■──────
└───┘
-
reverse_ops
()¶ Reverse the circuit by reversing the order of instructions.
This is done by recursively reversing all instructions. It does not invert (adjoint) any gate.
- Returns
the reversed circuit.
- Return type
Examples
- input:
┌───┐
- q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
- q_1: ─────┤ RX(1.57) ├
└──────────┘
- output:
┌───┐
- q_0: ─────■──────┤ H ├
┌────┴─────┐└───┘
- q_1: ┤ RX(1.57) ├─────
└──────────┘
-
save_amplitudes
(params, label='amplitudes', pershot=False, conditional=False)¶ Save complex statevector amplitudes.
- Parameters
params (List[int] or List[str]) – the basis states to return amplitudes for.
label (str) – the key for retrieving saved data from results.
pershot (bool) – if True save a list of amplitudes vectors for each shot of the simulation rather than the a single amplitude vector [Default: False].
conditional (bool) – if True save the amplitudes vector conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – if params is invalid for the specified number of qubits.
-
save_amplitudes_squared
(params, label='amplitudes_squared', unnormalized=False, pershot=False, conditional=False)¶ Save squared statevector amplitudes (probabilities).
- Parameters
params (List[int] or List[str]) – the basis states to return amplitudes for.
label (str) – the key for retrieving saved data from results.
unnormalized (bool) – If True return save the unnormalized accumulated probabilities over all shots [Default: False].
pershot (bool) – if True save a list of probability vectors for each shot of the simulation rather than the a single amplitude vector [Default: False].
conditional (bool) – if True save the probability vector conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – if params is invalid for the specified number of qubits.
-
save_density_matrix
(qubits=None, label='density_matrix', unnormalized=False, pershot=False, conditional=False)¶ Save the current simulator quantum state as a density matrix.
- Parameters
qubits (list or None) – the qubits to save reduced density matrix on. If None the full density matrix of qubits will be saved [Default: None].
label (str) – the key for retrieving saved data from results.
unnormalized (bool) – If True return save the unnormalized accumulated or conditional accumulated density matrix over all shots [Default: False].
pershot (bool) – if True save a list of density matrices for each shot of the simulation rather than the average over all shots [Default: False].
conditional (bool) – if True save the average or pershot data conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
-
save_expectation_value
(operator, qubits, label='expectation_value', unnormalized=False, pershot=False, conditional=False)¶ Save the expectation value of a Hermitian operator.
- Parameters
operator (Pauli or SparsePauliOp or Operator) – a Hermitian operator.
qubits (list) – circuit qubits to apply instruction.
label (str) – the key for retrieving saved data from results.
unnormalized (bool) – If True return save the unnormalized accumulated or conditional accumulated expectation value over all shot [Default: False].
pershot (bool) – if True save a list of expectation values for each shot of the simulation rather than the average over all shots [Default: False].
conditional (bool) – if True save the average or pershot data conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – if the input operator is invalid or not Hermitian.
Note
This method appends a
SaveExpectationValue
instruction to the quantum circuit.
-
save_expectation_value_variance
(operator, qubits, label='expectation_value_variance', unnormalized=False, pershot=False, conditional=False)¶ Save the expectation value of a Hermitian operator.
- Parameters
operator (Pauli or SparsePauliOp or Operator) – a Hermitian operator.
qubits (list) – circuit qubits to apply instruction.
label (str) – the key for retrieving saved data from results.
unnormalized (bool) – If True return save the unnormalized accumulated or conditional accumulated expectation value and variance over all shot [Default: False].
pershot (bool) – if True save a list of expectation values and variances for each shot of the simulation rather than the average over all shots [Default: False].
conditional (bool) – if True save the data conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – if the input operator is invalid or not Hermitian.
Note
This method appends a
SaveExpectationValueVariance
instruction to the quantum circuit.
-
save_matrix_product_state
(label='matrix_product_state', pershot=False, conditional=False)¶ Save the current simulator quantum state as a matrix product state.
- Parameters
label (str) – the key for retrieving saved data from results.
pershot (bool) – if True save the mps for each shot of the simulation [Default: False].
conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
-
save_probabilities
(qubits=None, label='probabilities', unnormalized=False, pershot=False, conditional=False)¶ Save measurement outcome probabilities vector.
- Parameters
qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
label (str) – the key for retrieving saved data from results.
unnormalized (bool) – If True return save the unnormalized accumulated probabilities over all shots [Default: False].
pershot (bool) – if True save a list of probabilities for each shot of the simulation rather than the average over all shots [Default: False].
conditional (bool) – if True save the probabilities data conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
-
save_probabilities_dict
(qubits=None, label='probabilities', unnormalized=False, pershot=False, conditional=False)¶ Save measurement outcome probabilities vector.
- Parameters
qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
label (str) – the key for retrieving saved data from results.
unnormalized (bool) – If True return save the unnormalized accumulated probabilities over all shots [Default: False].
pershot (bool) – if True save a list of probabilities for each shot of the simulation rather than the average over all shots [Default: False].
conditional (bool) – if True save the probabilities data conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
-
save_stabilizer
(label='stabilizer', pershot=False, conditional=False)¶ Save the current stabilizer simulator quantum state as a Clifford.
- Parameters
label (str) – the key for retrieving saved data from results.
pershot (bool) – if True save a list of Cliffords for each shot of the simulation [Default: False].
conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
Note
This instruction is always defined across all qubits in a circuit.
-
save_state
(label=None, pershot=False, conditional=False)¶ Save the current simulator quantum state.
- Parameters
label (str or None) – Optional, the key for retrieving saved data from results. If None the key will be the state type of the simulator.
pershot (bool) – if True save a list of statevectors for each shot of the simulation [Default: False].
conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
-
save_statevector
(label='statevector', pershot=False, conditional=False)¶ Save the current simulator quantum state as a statevector.
- Parameters
pershot (bool) – if True save a list of statevectors for each shot of the simulation [Default: False].
label (str) – the key for retrieving saved data from results.
conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
Note
This instruction is always defined across all qubits in a circuit.
-
save_statevector_dict
(label='statevector', pershot=False, conditional=False)¶ Save the current simulator quantum state as a statevector as a dict.
- Parameters
label (str) – the key for retrieving saved data from results.
pershot (bool) – if True save a list of statevectors for each shot of the simulation [Default: False].
conditional (bool) – if True save pershot data conditional on the current classical register values [Default: False].
- Returns
with attached instruction.
- Return type
Note
This instruction is always defined across all qubits in a circuit.
-
save_superop
(label='superop', pershot=False)¶ Save the current state of the superop simulator.
- Parameters
label (str) – the key for retrieving saved data from results.
pershot (bool) – if True save a list of SuperOp matrices for each shot of the simulation [Default: False].
- Returns
with attached instruction.
- Return type
Note
This instruction is always defined across all qubits in a circuit.
-
save_unitary
(label='unitary', pershot=False)¶ Save the current state of the unitary simulator.
- Parameters
label (str) – the key for retrieving saved data from results.
pershot (bool) – if True save a list of unitaries for each shot of the simulation [Default: False].
- Returns
with attached instruction.
- Return type
Note
This instruction is always defined across all qubits in a circuit.
-
set_density_matrix
(state)¶ Set the density matrix state of the simulator.
- Parameters
state (DensityMatrix) – a density matrix.
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – If the density matrix is the incorrect size for the current circuit.
-
set_matrix_product_state
(state)¶ Set the matrix product state of the simulator.
- Parameters
state (Tuple[List[Tuple[np.array[complex_t]]]], List[List[float]]) – A matrix_product_state.
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – If the structure of the state is incorrect
-
set_stabilizer
(state)¶ Set the Clifford stabilizer state of the simulator.
- Parameters
state (Clifford) – A clifford operator.
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – If the state is the incorrect size for the current circuit.
-
set_statevector
(state)¶ Set the statevector state of the simulator.
- Parameters
state (Statevector) – A state matrix.
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – If the state is the incorrect size for the current circuit.
-
set_superop
(state)¶ Set the superop state of the simulator.
- Parameters
state (QuantumChannel) – A CPTP quantum channel.
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – If the state is the incorrect size for the current circuit.
ExtensionError – if the input QuantumChannel is not CPTP.
-
set_unitary
(state)¶ Set the state state of the simulator.
- Parameters
state (Operator) – A state matrix.
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – If the state is the incorrect size for the current circuit.
ExtensionError – if the input matrix is not unitary.
-
size
()¶ Returns total number of gate operations in circuit.
- Returns
Total number of gate operations.
- Return type
int
-
snapshot
(label, snapshot_type='statevector', qubits=None, params=None)¶ Take a statevector snapshot of the internal simulator representation. Works on all qubits, and prevents reordering (like barrier). :param label: a snapshot label to report the result :type label: str :param snapshot_type: the type of the snapshot. :type snapshot_type: str :param qubits: the qubits to apply snapshot to [Default: None]. :type qubits: list or None :param params: the parameters for snapshot_type [Default: None]. :type params: list or None
- Returns
with attached command
- Return type
- Raises
ExtensionError – malformed command
-
snapshot_density_matrix
(label, qubits=None)¶ Take a density matrix snapshot of simulator state.
- Parameters
label (str) – a snapshot label to report the result
qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – if snapshot is invalid.
Note
This method will be deprecated after the qiskit-aer 0.8 release. It has been superseded by the
qiskit.providers.aer.library.save_density_matrix()
circuit method.
-
snapshot_expectation_value
(label, op, qubits, single_shot=False, variance=False)¶ Take a snapshot of expectation value <O> of an Operator.
- Parameters
label (str) – a snapshot label to report the result
op (Operator) – operator to snapshot
qubits (list) – the qubits to snapshot.
single_shot (bool) – return list for each shot rather than average [Default: False]
variance (bool) – compute variance of values [Default: False]
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – if snapshot is invalid.
Note
This method will be deprecated after the qiskit-aer 0.8 release. It has been superseded by the
qiskit.providers.aer.library.save_expectation_value()
andqiskit.providers.aer.library.save_expectation_value_variance()
circuit methods.
-
snapshot_probabilities
(label, qubits, variance=False)¶ Take a probability snapshot of the simulator state.
- Parameters
label (str) – a snapshot label to report the result
qubits (list) – the qubits to snapshot.
variance (bool) – compute variance of probabilities [Default: False]
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – if snapshot is invalid.
Note
This method will be deprecated after the qiskit-aer 0.8 release. It has been superseded by the
qiskit.providers.aer.library.save_probabilities()
andqiskit.providers.aer.library.save_probabilities_dict()
circuit methods.
-
snapshot_stabilizer
(label)¶ Take a stabilizer snapshot of the simulator state.
- Parameters
label (str) – a snapshot label to report the result.
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – if snapshot is invalid.
- Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
Note
This method will be deprecated after the qiskit-aer 0.8 release. It has been superseded by the
qiskit.providers.aer.library.save_stabilizer()
circuit method.
-
snapshot_statevector
(label)¶ Take a statevector snapshot of the simulator state.
- Parameters
label (str) – a snapshot label to report the result.
- Returns
with attached instruction.
- Return type
- Raises
ExtensionError – if snapshot is invalid.
- Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
Note
This method will be deprecated after the qiskit-aer 0.8 release. It has been superseded by the
qiskit.providers.aer.library.save_statevector()
circuit method.
-
squ
(unitary_matrix, qubit, mode='ZYZ', up_to_diagonal=False, *, u=None)¶ Decompose an arbitrary 2*2 unitary into three rotation gates.
Note that the decomposition is up to a global phase shift. (This is a well known decomposition, which can be found for example in Nielsen and Chuang’s book “Quantum computation and quantum information”.)
- Parameters
unitary_matrix (ndarray) – 2*2 unitary (given as a (complex) ndarray).
qubit (QuantumRegister | Qubit) – The qubit which the gate is acting on.
mode (string) – determines the used decomposition by providing the rotation axes. The allowed modes are: “ZYZ” (default)
up_to_diagonal (bool) – if set to True, the single-qubit unitary is decomposed up to a diagonal matrix, i.e. a unitary u’ is implemented such that there exists a 2*2 diagonal gate d with u = d.dot(u’)
u (ndarray) – Deprecated, use
unitary_matrix
instead.
- Returns
The single-qubit unitary instruction attached to the circuit.
- Return type
- Raises
QiskitError – if the format is wrong; if the array u is not unitary
-
tensor
(other, inplace=False)¶ Tensor
self
withother
.Remember that in the little-endian convention the leftmost operation will be at the bottom of the circuit. See also [the docs](qiskit.org/documentation/tutorials/circuits/3_summary_of_quantum_operations.html) for more information.
┌────────┐ ┌─────┐ ┌─────┐ q_0: ┤ bottom ├ ⊗ q_0: ┤ top ├ = q_0: ─┤ top ├── └────────┘ └─────┘ ┌┴─────┴─┐ q_1: ┤ bottom ├ └────────┘
- Parameters
other (QuantumCircuit) – The other circuit to tensor this circuit with.
inplace (bool) – If True, modify the object. Otherwise return composed circuit.
Examples
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) print(tensored.draw())
┌───┐ q_0: ───┤ X ├─── └───┘ q_1: ─────■───── ┌────┴────┐ q_2: ┤ RY(0.2) ├ └─────────┘
- Returns
The tensored circuit (returns None if inplace==True).
- Return type
-
to_gate
(parameter_map=None, label=None)¶ Create a Gate out of this circuit.
- Parameters
parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the gate. If None, existing circuit parameters will also parameterize the gate.
label (str) – Optional gate label.
- Returns
a composite gate encapsulating this circuit (can be decomposed back)
- Return type
-
to_instruction
(parameter_map=None)¶ Create an Instruction out of this circuit.
- Parameters
parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the instruction. If None, existing circuit parameters will also parameterize the instruction.
- Returns
a composite instruction encapsulating this circuit (can be decomposed back)
- Return type
-
uc
(gate_list, q_controls, q_target, up_to_diagonal=False)¶ Attach a uniformly controlled gates (also called multiplexed gates) to a circuit.
The decomposition was introduced by Bergholm et al. in https://arxiv.org/pdf/quant-ph/0410066.pdf.
- Parameters
gate_list (list[ndarray]) – list of two qubit unitaries [U_0,…,U_{2^k-1}], where each single-qubit unitary U_i is a given as a 2*2 array
q_controls (QuantumRegister|list[(QuantumRegister,int)]) – list of k control qubits. The qubits are ordered according to their significance in the computational basis. For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the unitary U_0 is performed if q[1] and q[2] are in the state zero, U_1 is performed if q[2] is in the state zero and q[1] is in the state one, and so on
q_target (QuantumRegister|(QuantumRegister,int)) – target qubit, where we act on with the single-qubit gates.
up_to_diagonal (bool) – If set to True, the uniformly controlled gate is decomposed up to a diagonal gate, i.e. a unitary u’ is implemented such that there exists a diagonal gate d with u = d.dot(u’), where the unitary u describes the uniformly controlled gate
- Returns
the uniformly controlled gate is attached to the circuit.
- Return type
- Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
-
ucrx
(angle_list, q_controls, q_target)¶ Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
- Parameters
angle_list (list) – list of (real) rotation angles \([a_0,...,a_{2^k-1}]\)
q_controls (QuantumRegister|list) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRx(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRx(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so onq_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
- Returns
the uniformly controlled rotation gate is attached to the circuit.
- Return type
- Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
-
ucry
(angle_list, q_controls, q_target)¶ Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
- Parameters
angle_list (list[numbers) – list of (real) rotation angles \([a_0,...,a_{2^k-1}]\)
q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRy(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRy(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so onq_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
- Returns
the uniformly controlled rotation gate is attached to the circuit.
- Return type
- Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
-
ucrz
(angle_list, q_controls, q_target)¶ Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
- Parameters
angle_list (list[numbers) – list of (real) rotation angles [a_0,…,a_{2^k-1}]
q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the rotation Rz(a_0)is performed if q[1] and q[2] are in the state zero, the rotation Rz(a_1) is performed if q[1] is in the state one and q[2] is in the state zero, and so on
q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
- Returns
the uniformly controlled rotation gate is attached to the circuit.
- Return type
- Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
-
unitary
(obj, qubits, label=None)¶ Apply unitary gate to q.
-
width
()¶ Return number of qubits plus clbits in circuit.
- Returns
Width of circuit.
- Return type
int