qiskit.quantum_info.SparsePauliOp¶
-
class
SparsePauliOp
(data, coeffs=None)[source]¶ Sparse N-qubit operator in a Pauli basis representation.
This is a sparse representation of an N-qubit matrix
Operator
in terms of N-qubitPauliTable
and complex coefficients.It can be used for performing operator arithmetic for hundred of qubits if the number of non-zero Pauli basis terms is sufficiently small.
The Pauli basis components are stored as a
PauliTable
object and can be accessed using thetable
attribute. The coefficients are stored as a complex Numpy array vector and can be accessed using thecoeffs
attribute.Initialize an operator object.
- Parameters
data (PauliTable) – Pauli table of terms.
coeffs (np.ndarray) – complex coefficients for Pauli terms.
- Raises
QiskitError – If the input data or coeffs are invalid.
-
__init__
(data, coeffs=None)[source]¶ Initialize an operator object.
- Parameters
data (PauliTable) – Pauli table of terms.
coeffs (np.ndarray) – complex coefficients for Pauli terms.
- Raises
QiskitError – If the input data or coeffs are invalid.
Methods
__init__
(data[, coeffs])Initialize an operator object.
adjoint
()Return the adjoint of the Operator.
compose
(other[, qargs, front])Return the operator composition with another SparsePauliOp.
Return the conjugate of the SparsePauliOp.
copy
()Make a deep copy of current operator.
dot
(other[, qargs])Return the right multiplied operator self * other.
expand
(other)Return the reverse-order tensor product with another SparsePauliOp.
from_list
(obj)Construct from a list [(pauli_str, coeffs)]
from_operator
(obj[, atol, rtol])Construct from an Operator objector.
input_dims
([qargs])Return tuple of input dimension for specified subsystems.
is_unitary
([atol, rtol])Return True if operator is a unitary matrix.
Return a label representation iterator.
matrix_iter
([sparse])Return a matrix representation iterator.
output_dims
([qargs])Return tuple of output dimension for specified subsystems.
power
(n)Return the compose of a operator with itself n times.
reshape
([input_dims, output_dims, num_qubits])Return a shallow copy with reshaped input and output subsystem dimensions.
simplify
([atol, rtol])Simplify PauliTable by combining duplicates and removing zeros.
tensor
(other)Return the tensor product with another SparsePauliOp.
to_list
([array])Convert to a list Pauli string labels and coefficients.
to_matrix
([sparse])Convert to a dense or sparse matrix.
Convert to a matrix Operator object
Return the transpose of the SparsePauliOp.
Attributes
Default absolute tolerance parameter for float comparisons.
Return the Pauli coefficients.
Return tuple (input_shape, output_shape).
Return the number of qubits if a N-qubit operator or None otherwise.
Return the qargs for the operator.
Default relative tolerance parameter for float comparisons.
The number of Pauli of Pauli terms in the operator.
Return the the PauliTable.
-
property
atol
¶ Default absolute tolerance parameter for float comparisons.
-
property
coeffs
¶ Return the Pauli coefficients.
-
compose
(other, qargs=None, front=False)[source]¶ Return the operator composition with another SparsePauliOp.
- Parameters
other (SparsePauliOp) – a SparsePauliOp object.
qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
front (bool) – If True compose using right operator multiplication, instead of left multiplication [default: False].
- Returns
The composed SparsePauliOp.
- Return type
- Raises
QiskitError – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
Note
Composition (
&
) by default is defined as left matrix multiplication for matrix operators, whiledot()
is defined as right matrix multiplication. That is thatA & B == A.compose(B)
is equivalent toB.dot(A)
whenA
andB
are of the same type.Setting the
front=True
kwarg changes this to right matrix multiplication and is equivalent to thedot()
methodA.dot(B) == A.compose(B, front=True)
.
-
copy
()¶ Make a deep copy of current operator.
-
property
dim
¶ Return tuple (input_shape, output_shape).
-
dot
(other, qargs=None)¶ Return the right multiplied operator self * other.
-
expand
(other)[source]¶ Return the reverse-order tensor product with another SparsePauliOp.
- Parameters
other (SparsePauliOp) – a SparsePauliOp object.
- Returns
- the tensor product \(b \otimes a\), where \(a\)
is the current SparsePauliOp, and \(b\) is the other SparsePauliOp.
- Return type
-
static
from_operator
(obj, atol=None, rtol=None)[source]¶ Construct from an Operator objector.
Note that the cost of this construction is exponential as it involves taking inner products with every element of the N-qubit Pauli basis.
- Parameters
obj (Operator) – an N-qubit operator.
atol (float) – Optional. Absolute tolerance for checking if coefficients are zero (Default: 1e-8).
rtol (float) – Optional. relative tolerance for checking if coefficients are zero (Default: 1e-5).
- Returns
the SparsePauliOp representation of the operator.
- Return type
- Raises
QiskitError – if the input operator is not an N-qubit operator.
-
input_dims
(qargs=None)¶ Return tuple of input dimension for specified subsystems.
-
is_unitary
(atol=None, rtol=None)[source]¶ Return True if operator is a unitary matrix.
- Parameters
atol (float) – Optional. Absolute tolerance for checking if coefficients are zero (Default: 1e-8).
rtol (float) – Optional. relative tolerance for checking if coefficients are zero (Default: 1e-5).
- Returns
True if the operator is unitary, False otherwise.
- Return type
bool
-
label_iter
()[source]¶ Return a label representation iterator.
This is a lazy iterator that converts each term in the SparsePauliOp into a tuple (label, coeff). To convert the entire table to labels use the
to_labels()
method.- Returns
label iterator object for the PauliTable.
- Return type
LabelIterator
-
matrix_iter
(sparse=False)[source]¶ Return a matrix representation iterator.
This is a lazy iterator that converts each term in the SparsePauliOp into a matrix as it is used. To convert to a single matrix use the
to_matrix()
method.- Parameters
sparse (bool) – optionally return sparse CSR matrices if True, otherwise return Numpy array matrices (Default: False)
- Returns
matrix iterator object for the PauliTable.
- Return type
MatrixIterator
-
property
num_qubits
¶ Return the number of qubits if a N-qubit operator or None otherwise.
-
output_dims
(qargs=None)¶ Return tuple of output dimension for specified subsystems.
-
power
(n)¶ Return the compose of a operator with itself n times.
- Parameters
n (int) – the number of times to compose with self (n>0).
- Returns
the n-times composed operator.
- Return type
- Raises
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
-
property
qargs
¶ Return the qargs for the operator.
-
reshape
(input_dims=None, output_dims=None, num_qubits=None)¶ Return a shallow copy with reshaped input and output subsystem dimensions.
- Parameters
input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
- Returns
returns self with reshaped input and output dimensions.
- Return type
BaseOperator
- Raises
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
-
property
rtol
¶ Default relative tolerance parameter for float comparisons.
-
simplify
(atol=None, rtol=None)[source]¶ Simplify PauliTable by combining duplicates and removing zeros.
- Parameters
atol (float) – Optional. Absolute tolerance for checking if coefficients are zero (Default: 1e-8).
rtol (float) – Optional. relative tolerance for checking if coefficients are zero (Default: 1e-5).
- Returns
the simplified SparsePauliOp operator.
- Return type
-
property
size
¶ The number of Pauli of Pauli terms in the operator.
-
property
table
¶ Return the the PauliTable.
-
tensor
(other)[source]¶ Return the tensor product with another SparsePauliOp.
- Parameters
other (SparsePauliOp) – a SparsePauliOp object.
- Returns
- the tensor product \(a \otimes b\), where \(a\)
is the current SparsePauliOp, and \(b\) is the other SparsePauliOp.
- Return type
Note
The tensor product can be obtained using the
^
binary operator. Hencea.tensor(b)
is equivalent toa ^ b
.
-
to_list
(array=False)[source]¶ Convert to a list Pauli string labels and coefficients.
For operators with a lot of terms converting using the
array=True
kwarg will be more efficient since it allocates memory for the full Numpy array of labels in advance.- Parameters
array (bool) – return a Numpy array if True, otherwise return a list (Default: False).
- Returns
List of pairs (label, coeff) for rows of the PauliTable.
- Return type
list or array
-
to_matrix
(sparse=False)[source]¶ Convert to a dense or sparse matrix.
- Parameters
sparse (bool) – if True return a sparse CSR matrix, otherwise return dense Numpy array (Default: False).
- Returns
A dense matrix if sparse=False. csr_matrix: A sparse matrix in CSR format if sparse=True.
- Return type
array