qiskit.aqua.components.neural_networks.QuantumGenerator¶
-
class
QuantumGenerator
(bounds, num_qubits, generator_circuit=None, init_params=None, optimizer=None, gradient_function=None, snapshot_dir=None)[ソース]¶ Quantum Generator.
The quantum generator is a parametrized quantum circuit which can be trained with the
QGAN
algorithm to generate a quantum state which approximates the probability distribution of given training data. At the beginning of the training the parameters will be set randomly, thus, the output will is random. Throughout the training the quantum generator learns to represent the target distribution. Eventually, the trained generator can be used for state preparation e.g. in QAE.- パラメータ
bounds (
ndarray
) – k min/max data values [[min_1,max_1],…,[min_k,max_k]], given input data dim knum_qubits (
Union
[List
[int
],ndarray
]) – k numbers of qubits to determine representation resolution, i.e. n qubits enable the representation of 2**n values [n_1,…, n_k]generator_circuit (
Union
[UnivariateVariationalDistribution
,MultivariateVariationalDistribution
,QuantumCircuit
,None
]) – a UnivariateVariationalDistribution for univariate data, a MultivariateVariationalDistribution for multivariate data, or a QuantumCircuit implementing the generator.init_params (
Union
[List
[float
],ndarray
,None
]) – 1D numpy array or list, Initialization for the generator’s parameters.optimizer (
Optional
[Optimizer
]) – optimizer to be used for the training of the generatorgradient_function (
Union
[Callable
,Gradient
,None
]) – A Gradient object, or a function returning partial derivatives of the loss function w.r.t. the generator variational params.snapshot_dir (
Optional
[str
]) – str or None, if not None save the optimizer’s parameter after every update step to the given directory
- 例外
AquaError – Set multivariate variational distribution to represent multivariate data
-
__init__
(bounds, num_qubits, generator_circuit=None, init_params=None, optimizer=None, gradient_function=None, snapshot_dir=None)[ソース]¶ - パラメータ
bounds (
ndarray
) – k min/max data values [[min_1,max_1],…,[min_k,max_k]], given input data dim knum_qubits (
Union
[List
[int
],ndarray
]) – k numbers of qubits to determine representation resolution, i.e. n qubits enable the representation of 2**n values [n_1,…, n_k]generator_circuit (
Union
[UnivariateVariationalDistribution
,MultivariateVariationalDistribution
,QuantumCircuit
,None
]) – a UnivariateVariationalDistribution for univariate data, a MultivariateVariationalDistribution for multivariate data, or a QuantumCircuit implementing the generator.init_params (
Union
[List
[float
],ndarray
,None
]) – 1D numpy array or list, Initialization for the generator’s parameters.optimizer (
Optional
[Optimizer
]) – optimizer to be used for the training of the generatorgradient_function (
Union
[Callable
,Gradient
,None
]) – A Gradient object, or a function returning partial derivatives of the loss function w.r.t. the generator variational params.snapshot_dir (
Optional
[str
]) – str or None, if not None save the optimizer’s parameter after every update step to the given directory
- 例外
AquaError – Set multivariate variational distribution to represent multivariate data
Methods
__init__
(bounds, num_qubits[, …])- type bounds
ndarray
construct_circuit
([params])Construct generator circuit.
get_output
(quantum_instance[, params, shots])Get classical data samples from the generator.
loss
(x, weights)Loss function for training the generator’s parameters.
set_discriminator
(discriminator)Set discriminator network.
set_seed
(seed)Set seed.
train
([quantum_instance, shots])Perform one training step w.r.t to the generator’s parameters
Attributes
Get discriminator.
Get optimizer.
Get parameter values from the quantum generator
Get seed.
-
construct_circuit
(params=None)[ソース]¶ Construct generator circuit.
- パラメータ
params (list | dict) – parameters which should be used to run the generator.
- 戻り値
construct the quantum circuit and return as gate
- 戻り値の型
-
property
discriminator
¶ Get discriminator.
- 戻り値の型
DiscriminativeNetwork
-
get_output
(quantum_instance, params=None, shots=None)[ソース]¶ Get classical data samples from the generator. Running the quantum generator circuit results in a quantum state. To train this generator with a classical discriminator, we need to sample classical outputs by measuring the quantum state and mapping them to feature space defined by the training data.
- パラメータ
quantum_instance (QuantumInstance) – Quantum Instance, used to run the generator circuit.
params (numpy.ndarray) – array or None, parameters which should be used to run the generator, if None use self._params
shots (int) – if not None use a number of shots that is different from the number set in quantum_instance
- 戻り値
generated samples, array: sample occurrence in percentage
- 戻り値の型
list
-
loss
(x, weights)[ソース]¶ Loss function for training the generator’s parameters.
- パラメータ
x (numpy.ndarray) – sample label (equivalent to discriminator output)
weights (numpy.ndarray) – probability for measuring the sample
- 戻り値
loss function
- 戻り値の型
float
-
property
optimizer
¶ Get optimizer.
- 戻り値の型
Optimizer
-
property
parameter_values
¶ Get parameter values from the quantum generator
- 戻り値の型
Union
[List
,ndarray
]- 戻り値
Current parameter values
-
property
seed
¶ Get seed.
- 戻り値の型
int
-
set_discriminator
(discriminator)[ソース]¶ Set discriminator network.
- パラメータ
discriminator (DiscriminativeNetwork) – Discriminator used to compute the loss function.
- 戻り値の型
None
-
train
(quantum_instance=None, shots=None)[ソース]¶ Perform one training step w.r.t to the generator’s parameters
- パラメータ
quantum_instance (QuantumInstance) – used to run the generator circuit.
shots (int) – Number of shots for hardware or qasm execution.
- 戻り値
generator loss(float) and updated parameters (array).
- 戻り値の型
dict