qiskit.optimization.algorithms.RecursiveMinimumEigenOptimizationResult¶
-
class
RecursiveMinimumEigenOptimizationResult
(x, fval, variables, status, replacements, history)[source]¶ Recursive Eigen Optimizer Result.
Constructs an instance of the result class.
- Parameters
x (
Union
[List
[float
],ndarray
]) – the optimal value found in the optimization.fval (
float
) – the optimal function value.variables (
List
[Variable
]) – the list of variables of the optimization problem.status (
OptimizationResultStatus
) – the termination status of the optimization algorithm.replacements (
Dict
[str
,Tuple
[str
,int
]]) – a dictionary of substituted variables. Key is a variable being substituted, value is a tuple of substituting variable and a weight, either 1 or -1.history (
Tuple
[List
[MinimumEigenOptimizationResult
],OptimizationResult
]) – a tuple containing intermediate results. The first element is a list ofMinimumEigenOptimizerResult
obtained by invokingMinimumEigenOptimizer
iteratively, the second element is an instance ofOptimizationResult
obtained at the last step via min_num_vars_optimizer.
-
__init__
(x, fval, variables, status, replacements, history)[source]¶ Constructs an instance of the result class.
- Parameters
x (
Union
[List
[float
],ndarray
]) – the optimal value found in the optimization.fval (
float
) – the optimal function value.variables (
List
[Variable
]) – the list of variables of the optimization problem.status (
OptimizationResultStatus
) – the termination status of the optimization algorithm.replacements (
Dict
[str
,Tuple
[str
,int
]]) – a dictionary of substituted variables. Key is a variable being substituted, value is a tuple of substituting variable and a weight, either 1 or -1.history (
Tuple
[List
[MinimumEigenOptimizationResult
],OptimizationResult
]) – a tuple containing intermediate results. The first element is a list ofMinimumEigenOptimizerResult
obtained by invokingMinimumEigenOptimizer
iteratively, the second element is an instance ofOptimizationResult
obtained at the last step via min_num_vars_optimizer.
Methods
__init__
(x, fval, variables, status, …)Constructs an instance of the result class.
Attributes
Returns the optimal function value.
Returns intermediate results.
Return the original results object from the optimization algorithm.
Returns a dictionary of substituted variables.
Returns the termination status of the optimization algorithm.
Returns the list of variable names of the optimization problem.
Returns the list of variables of the optimization problem.
Returns the optimal value as a dictionary of the variable name and corresponding value.
Returns the optimal value found in the optimization or None in case of FAILURE.
-
property
fval
¶ Returns the optimal function value.
- Return type
float
- Returns
The function value corresponding to the optimal value found in the optimization.
-
property
history
¶ Returns intermediate results. The first element is a list of
MinimumEigenOptimizerResult
obtained by invokingMinimumEigenOptimizer
iteratively, the second element is an instance ofOptimizationResult
obtained at the last step via min_num_vars_optimizer.- Return type
Tuple
[List
[MinimumEigenOptimizationResult
],OptimizationResult
]
-
property
raw_results
¶ Return the original results object from the optimization algorithm.
Currently a dump for any leftovers.
- Return type
Any
- Returns
Additional result information of the optimization algorithm.
-
property
replacements
¶ Returns a dictionary of substituted variables. Key is a variable being substituted, value is a tuple of substituting variable and a weight, either 1 or -1.
- Return type
Dict
[str
,Tuple
[str
,int
]]
-
property
status
¶ Returns the termination status of the optimization algorithm.
- Return type
OptimizationResultStatus
- Returns
The termination status of the algorithm.
-
property
variable_names
¶ Returns the list of variable names of the optimization problem.
- Return type
List
[str
]- Returns
The list of variable names of the optimization problem.
-
property
variables
¶ Returns the list of variables of the optimization problem.
- Return type
List
[Variable
]- Returns
The list of variables.
-
property
variables_dict
¶ Returns the optimal value as a dictionary of the variable name and corresponding value.
- Return type
Dict
[str
,float
]- Returns
The optimal value as a dictionary of the variable name and corresponding value.
-
property
x
¶ Returns the optimal value found in the optimization or None in case of FAILURE.
- Return type
Optional
[ndarray
]- Returns
The optimal value found in the optimization.