German
Sprachen
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.optimization.algorithms.RecursiveMinimumEigenOptimizationResult

class RecursiveMinimumEigenOptimizationResult(x, fval, variables, status, replacements, history)[Quellcode]

Recursive Eigen Optimizer Result.

Constructs an instance of the result class.

Parameter
  • x (Union[List[float], ndarray]) – the optimal value found in the optimization.

  • fval (float) – the optimal function value.

  • variables (List[Variable]) – the list of variables of the optimization problem.

  • status (OptimizationResultStatus) – the termination status of the optimization algorithm.

  • replacements (Dict[str, Tuple[str, int]]) – a dictionary of substituted variables. Key is a variable being substituted, value is a tuple of substituting variable and a weight, either 1 or -1.

  • history (Tuple[List[MinimumEigenOptimizationResult], OptimizationResult]) – a tuple containing intermediate results. The first element is a list of MinimumEigenOptimizerResult obtained by invoking MinimumEigenOptimizer iteratively, the second element is an instance of OptimizationResult obtained at the last step via min_num_vars_optimizer.

__init__(x, fval, variables, status, replacements, history)[Quellcode]

Constructs an instance of the result class.

Parameter
  • x (Union[List[float], ndarray]) – the optimal value found in the optimization.

  • fval (float) – the optimal function value.

  • variables (List[Variable]) – the list of variables of the optimization problem.

  • status (OptimizationResultStatus) – the termination status of the optimization algorithm.

  • replacements (Dict[str, Tuple[str, int]]) – a dictionary of substituted variables. Key is a variable being substituted, value is a tuple of substituting variable and a weight, either 1 or -1.

  • history (Tuple[List[MinimumEigenOptimizationResult], OptimizationResult]) – a tuple containing intermediate results. The first element is a list of MinimumEigenOptimizerResult obtained by invoking MinimumEigenOptimizer iteratively, the second element is an instance of OptimizationResult obtained at the last step via min_num_vars_optimizer.

Methods

__init__(x, fval, variables, status, …)

Constructs an instance of the result class.

Attributes

fval

Returns the optimal function value.

history

Returns intermediate results.

raw_results

Return the original results object from the optimization algorithm.

replacements

Returns a dictionary of substituted variables.

status

Returns the termination status of the optimization algorithm.

variable_names

Returns the list of variable names of the optimization problem.

variables

Returns the list of variables of the optimization problem.

variables_dict

Returns the optimal value as a dictionary of the variable name and corresponding value.

x

Returns the optimal value found in the optimization or None in case of FAILURE.

property fval

Returns the optimal function value.

Rückgabetyp

float

Rückgabe

The function value corresponding to the optimal value found in the optimization.

property history

Returns intermediate results. The first element is a list of MinimumEigenOptimizerResult obtained by invoking MinimumEigenOptimizer iteratively, the second element is an instance of OptimizationResult obtained at the last step via min_num_vars_optimizer.

Rückgabetyp

Tuple[List[MinimumEigenOptimizationResult], OptimizationResult]

property raw_results

Return the original results object from the optimization algorithm.

Currently a dump for any leftovers.

Rückgabetyp

Any

Rückgabe

Additional result information of the optimization algorithm.

property replacements

Returns a dictionary of substituted variables. Key is a variable being substituted, value is a tuple of substituting variable and a weight, either 1 or -1.

Rückgabetyp

Dict[str, Tuple[str, int]]

property status

Returns the termination status of the optimization algorithm.

Rückgabetyp

OptimizationResultStatus

Rückgabe

The termination status of the algorithm.

property variable_names

Returns the list of variable names of the optimization problem.

Rückgabetyp

List[str]

Rückgabe

The list of variable names of the optimization problem.

property variables

Returns the list of variables of the optimization problem.

Rückgabetyp

List[Variable]

Rückgabe

The list of variables.

property variables_dict

Returns the optimal value as a dictionary of the variable name and corresponding value.

Rückgabetyp

Dict[str, float]

Rückgabe

The optimal value as a dictionary of the variable name and corresponding value.

property x

Returns the optimal value found in the optimization or None in case of FAILURE.

Rückgabetyp

Optional[ndarray]

Rückgabe

The optimal value found in the optimization.