English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.ignis.verification.CNOTDihedral

class CNOTDihedral(data, validate=True)[source]

CNOT-dihedral Object Class. The CNOT-dihedral group on num_qubits qubits is generated by the gates CNOT, T and X.

References

  1. Shelly Garion and Andrew W. Cross, On the structure of the CNOT-Dihedral group, arXiv:2006.12042 [quant-ph]

  2. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, Scalable randomised benchmarking of non-Clifford gates, npj Quantum Inf 2, 16012 (2016).

Initialize a CNOTDihedral operator object.

__init__(data, validate=True)[source]

Initialize a CNOTDihedral operator object.

Methods

__init__(data[, validate])

Initialize a CNOTDihedral operator object.

add(other)

Return the linear operator self + other.

adjoint()

Return the conjugate transpose of the CNOTDihedral element

cnot(i, j)

Apply a CNOT gate to this element.

compose(other[, qargs, front])

Return the composed operator.

conjugate()

Return the conjugate of the CNOTDihedral element.

copy()

Make a deep copy of current operator.

dot(other[, qargs])

Return the right multiplied operator self * other.

expand(other)

Return the tensor product operator: other tensor self.

flip(i)

Apply X to this element.

from_circuit(circuit)

Initialize from a QuantumCircuit or Instruction.

input_dims([qargs])

Return tuple of input dimension for specified subsystems.

is_cnotdihedral()

Return True if input is a CNOTDihedral element.

multiply(other)

Return the linear operator other * self.

output_dims([qargs])

Return tuple of output dimension for specified subsystems.

phase(k, i)

Apply an k-th power of T to this element.

power(n)

Return the compose of a operator with itself n times.

reshape([input_dims, output_dims])

Return a shallow copy with reshaped input and output subsystem dimensions.

set_atol(value)

Set the class default absolute tolerance parameter for float comparisons.

set_rtol(value)

Set the class default relative tolerance parameter for float comparisons.

subtract(other)

Return the linear operator self - other.

tensor(other)

Return the tensor product operator: self tensor other.

to_circuit()

Return a QuantumCircuit implementing the CNOT-Dihedral element.

to_instruction()

Return a Gate instruction implementing the CNOTDihedral object.

to_matrix()

Convert operator to Numpy matrix.

to_operator()

Convert to an Operator object.

transpose()

Return the transpose of the CNOT-Dihedral element.

Attributes

atol

The default absolute tolerance parameter for float comparisons.

dim

Return tuple (input_shape, output_shape).

key

Return a string representation of a CNOT-dihedral object.

num_qubits

Return the number of qubits if a N-qubit operator or None otherwise.

qargs

Return the qargs for the operator.

rtol

The relative tolerance parameter for float comparisons.

add(other)

Return the linear operator self + other.

DEPRECATED: use operator + other instead.

Parameters

other (BaseOperator) – an operator object.

Returns

the operator self + other.

Return type

BaseOperator

adjoint()[source]

Return the conjugate transpose of the CNOTDihedral element

property atol

The default absolute tolerance parameter for float comparisons.

cnot(i, j)[source]

Apply a CNOT gate to this element. Left multiply the element by CNOT_{i,j}.

compose(other, qargs=None, front=False)[source]

Return the composed operator.

Parameters
  • other (CNOTDihedral) – an operator object.

  • qargs (None) – using specific qargs is not implemented for this operator.

  • front (bool) – if True compose using right operator multiplication, instead of left multiplication [default: False].

Returns

The operator self @ other.

Return type

CNOTDihedral

Raises
  • QiskitError – if operators have incompatible dimensions for composition.

  • NotImplementedError – if qargs is not None.

Additional Information:

Composition (@) is defined as left matrix multiplication for matrix operators. That is that A @ B is equal to B * A. Setting front=True returns right matrix multiplication A * B and is equivalent to the dot() method.

conjugate()[source]

Return the conjugate of the CNOTDihedral element.

copy()

Make a deep copy of current operator.

property dim

Return tuple (input_shape, output_shape).

dot(other, qargs=None)[source]

Return the right multiplied operator self * other.

Parameters
  • other (CNOTDihedral) – an operator object.

  • qargs (None) – using specific qargs is not implemented for this operator.

Returns

The operator self * other.

Return type

CNOTDihedral

Raises
  • QiskitError – if operators have incompatible dimensions for composition.

  • NotImplementedError – if qargs is not None.

expand(other)[source]

Return the tensor product operator: other tensor self.

Parameters

other (CNOTDihedral) – an operator subclass object.

Returns

the tensor product operator: other tensor other.

Return type

CNOTDihedral

flip(i)[source]

Apply X to this element. Left multiply the element by X_i.

from_circuit(circuit)[source]

Initialize from a QuantumCircuit or Instruction.

Parameters

circuit (QuantumCircuit or Instruction) – instruction to initialize.

Returns

the CNOTDihedral object for the circuit.

Return type

CNOTDihedral

Raises

QiskitError – if the input instruction is not CNOTDihedral or contains classical register instruction.

input_dims(qargs=None)

Return tuple of input dimension for specified subsystems.

is_cnotdihedral()[source]

Return True if input is a CNOTDihedral element.

property key

Return a string representation of a CNOT-dihedral object.

multiply(other)

Return the linear operator other * self.

DEPRECATED: use other * operator instead.

Parameters

other (complex) – a complex number.

Returns

the linear operator other * self.

Return type

BaseOperator

Raises

NotImplementedError – if subclass does not support multiplication.

property num_qubits

Return the number of qubits if a N-qubit operator or None otherwise.

output_dims(qargs=None)

Return tuple of output dimension for specified subsystems.

phase(k, i)[source]

Apply an k-th power of T to this element. Left multiply the element by T_i^k.

power(n)

Return the compose of a operator with itself n times.

Parameters

n (int) – the number of times to compose with self (n>0).

Returns

the n-times composed operator.

Return type

BaseOperator

Raises

QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.

property qargs

Return the qargs for the operator.

reshape(input_dims=None, output_dims=None)

Return a shallow copy with reshaped input and output subsystem dimensions.

Arg:
input_dims (None or tuple): new subsystem input dimensions.

If None the original input dims will be preserved [Default: None].

output_dims (None or tuple): new subsystem output dimensions.

If None the original output dims will be preserved [Default: None].

Returns

returns self with reshaped input and output dimensions.

Return type

BaseOperator

Raises

QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.

property rtol

The relative tolerance parameter for float comparisons.

classmethod set_atol(value)

Set the class default absolute tolerance parameter for float comparisons.

DEPRECATED: use operator.atol = value instead

classmethod set_rtol(value)

Set the class default relative tolerance parameter for float comparisons.

DEPRECATED: use operator.rtol = value instead

subtract(other)

Return the linear operator self - other.

DEPRECATED: use operator - other instead.

Parameters

other (BaseOperator) – an operator object.

Returns

the operator self - other.

Return type

BaseOperator

tensor(other)[source]

Return the tensor product operator: self tensor other.

Parameters

other (CNOTDihedral) – an operator subclass object.

Returns

the tensor product operator: self tensor other.

Return type

CNOTDihedral

to_circuit()[source]

Return a QuantumCircuit implementing the CNOT-Dihedral element.

Returns

a circuit implementation of the CNOTDihedral object.

Return type

QuantumCircuit

Remark:

Decompose 1 and 2-qubit CNOTDihedral elements.

References

  1. Shelly Garion and Andrew W. Cross, On the structure of the CNOT-Dihedral group, arXiv:2006.12042 [quant-ph]

  2. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, Scalable randomised benchmarking of non-Clifford gates, npj Quantum Inf 2, 16012 (2016).

to_instruction()[source]

Return a Gate instruction implementing the CNOTDihedral object.

to_matrix()[source]

Convert operator to Numpy matrix.

to_operator()[source]

Convert to an Operator object.

transpose()[source]

Return the transpose of the CNOT-Dihedral element.