English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Source code for qiskit.ignis.verification.randomized_benchmarking.dihedral

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Methods for working with the CNOT-dihedral group.

Example:

  from dihedral import CNOTDihedral
  g = CNOTDihedral(3)  # create identity element on 3 qubits
  g.cnot(0,1)          # apply CNOT from qubit 0 to qubit 1
  g.flip(2)            # apply X on qubit 2
  g.phase(3, 1)        # apply T^3 on qubit 1
  print(g)             # pretty print g

  phase polynomial =
   0 + 3*x_0 + 3*x_1 + 2*x_0*x_1
  affine function =
   (x_0,x_0 + x_1,x_2 + 1)

 This means that |x_0 x_1 x_2> transforms to omega^{p(x)}|f(x)>,
 where omega = exp(i*pi/4) from which we can read that
 T^3 on qubit 1 AFTER CNOT_{0,1} is the same as
 T^3 on qubit 0, T^3 on qubit 1, and CS_{0,1} BEFORE CNOT_{0,1}.
"""

import itertools
from itertools import combinations
import copy
from functools import reduce
from operator import mul
import numpy as np
from numpy.random import RandomState

from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.quantum_info.operators.operator import Operator
from qiskit.quantum_info.operators.pauli import Pauli
from qiskit.quantum_info.operators.scalar_op import ScalarOp
from qiskit.circuit import QuantumCircuit, Instruction


class SpecialPolynomial():
    """Multivariate polynomial with special form.

    Maximum degree 3, n Z_2 variables, coefficients in Z_8.
    """

    def __init__(self, n_vars):
        """Construct the zero polynomial on n_vars variables."""
        #   1 constant term
        #   n linear terms x_1, ..., x_n
        #   {n choose 2} quadratic terms x_1x_2, x_1x_3, ..., x_{n-1}x_n
        #   {n choose 3} cubic terms x_1x_2x_3, ..., x_{n-2}x_{n-1}x_n
        # and coefficients in Z_8
        if n_vars < 1:
            raise QiskitError("n_vars for SpecialPolynomial is too small.")
        self.n_vars = n_vars
        self.nc2 = int(n_vars * (n_vars-1) / 2)
        self.nc3 = int(n_vars * (n_vars-1) * (n_vars-2) / 6)
        self.weight_0 = 0
        self.weight_1 = np.zeros(n_vars, dtype=np.int8)
        self.weight_2 = np.zeros(self.nc2, dtype=np.int8)
        self.weight_3 = np.zeros(self.nc3, dtype=np.int8)

    def mul_monomial(self, indices):
        """Multiply by a monomial given by indices.

        Returns the product.
        """
        length = len(indices)
        if length >= 4:
            raise QiskitError("There is no term with on more than 3 indices.")
        indices_arr = np.array(indices)
        if (indices_arr < 0).any() and (indices_arr > self.n_vars).any():
            raise QiskitError("Indices are out of bounds.")
        if length > 1 and (np.diff(indices_arr) <= 0).any():
            raise QiskitError("Indices are non-increasing!")
        result = SpecialPolynomial(self.n_vars)
        if length == 0:
            result = copy.deepcopy(self)
        else:
            terms0 = [[]]
            terms1 = list(combinations(range(self.n_vars), r=1))
            terms2 = list(combinations(range(self.n_vars), r=2))
            terms3 = list(combinations(range(self.n_vars), r=3))
            for term in terms0 + terms1 + terms2 + terms3:
                value = self.get_term(term)
                new_term = list(set(term).union(set(indices)))
                result.set_term(new_term, (result.get_term(new_term) + value) % 8)
        return result

    def __mul__(self, other):
        """Multiply two polynomials."""
        if not isinstance(other, SpecialPolynomial):
            other = int(other)
        result = SpecialPolynomial(self.n_vars)
        if isinstance(other, int):
            result.weight_0 = (self.weight_0 * other) % 8
            result.weight_1 = (self.weight_1 * other) % 8
            result.weight_2 = (self.weight_2 * other) % 8
            result.weight_3 = (self.weight_3 * other) % 8
        else:
            if self.n_vars != other.n_vars:
                raise QiskitError("Multiplication on different n_vars.")
            terms0 = [[]]
            terms1 = list(combinations(range(self.n_vars), r=1))
            terms2 = list(combinations(range(self.n_vars), r=2))
            terms3 = list(combinations(range(self.n_vars), r=3))
            for term in terms0 + terms1 + terms2 + terms3:
                value = other.get_term(term)
                if value != 0:
                    temp = copy.deepcopy(self)
                    temp = temp.mul_monomial(term)
                    temp = temp * value
                    result = result + temp
        return result

    def __rmul__(self, other):
        """Right multiplication.

        This operation is commutative.
        """
        return self.__mul__(other)

    def __add__(self, other):
        """Add two polynomials."""
        if not isinstance(other, SpecialPolynomial):
            raise QiskitError("Element to add is not a SpecialPolynomial.")
        if self.n_vars != other.n_vars:
            raise QiskitError("Addition on different n_vars.")
        result = SpecialPolynomial(self.n_vars)
        result.weight_0 = (self.weight_0 + other.weight_0) % 8
        result.weight_1 = (self.weight_1 + other.weight_1) % 8
        result.weight_2 = (self.weight_2 + other.weight_2) % 8
        result.weight_3 = (self.weight_3 + other.weight_3) % 8
        return result

    def evaluate(self, xval):
        """Evaluate the multinomial at xval.

        if xval is a length n z2 vector, return element of Z8.
        if xval is a length n vector of multinomials, return
        a multinomial. The multinomials must all be on n vars.
        """
        if len(xval) != self.n_vars:
            raise QiskitError("Evaluate on wrong number of variables.")
        check_int = list(map(lambda x: isinstance(x, int), xval))
        check_poly = list(map(lambda x: isinstance(x, SpecialPolynomial), xval))
        if False in check_int and False in check_poly:
            raise QiskitError("Evaluate on a wrong type.")
        is_int = (False not in check_int)
        if not is_int:
            if False in [i.n_vars == self.n_vars for i in xval]:
                raise QiskitError("Evaluate on incompatible polynomials.")
        else:
            xval = xval % 2
        # Examine each term of this polynomial
        terms0 = [[]]
        terms1 = list(combinations(range(self.n_vars), r=1))
        terms2 = list(combinations(range(self.n_vars), r=2))
        terms3 = list(combinations(range(self.n_vars), r=3))
        # Set the initial result and start for each term
        if is_int:
            result = 0
            start = 1
        else:
            result = SpecialPolynomial(self.n_vars)
            start = SpecialPolynomial(self.n_vars)
            start.weight_0 = 1
        # Compute the new terms and accumulate
        for term in terms0 + terms1 + terms2 + terms3:
            value = self.get_term(term)
            if value != 0:
                newterm = reduce(mul, [xval[j] for j in term], start)
                result = result + value * newterm
        if isinstance(result, int):
            result = result % 8
        return result

    def set_pj(self, indices):
        """Set to special form polynomial on subset of variables.

        p_J(x) := sum_{a subseteq J,|a| neq 0} (-2)^{|a|-1}x^a
        """
        indices_arr = np.array(indices)
        if (indices_arr < 0).any() or (indices_arr >= self.n_vars).any():
            raise QiskitError("Indices are out of bounds.")
        indices = sorted(indices)
        subsets_2 = itertools.combinations(indices, 2)
        subsets_3 = itertools.combinations(indices, 3)
        self.weight_0 = 0
        self.weight_1 = np.zeros(self.n_vars)
        self.weight_2 = np.zeros(self.nc2)
        self.weight_3 = np.zeros(self.nc3)
        for j in indices:
            self.set_term([j], 1)
        for j in subsets_2:
            self.set_term(list(j), 6)
        for j in subsets_3:
            self.set_term(list(j), 4)

    def get_term(self, indices):
        """Get the value of a term given the list of variables.

        Example: indices = [] returns the constant
                 indices = [0] returns the coefficient of x_0
                 indices = [0,3] returns the coefficient of x_0x_3
                 indices = [0,1,3] returns the coefficient of x_0x_1x_3

        If len(indices) > 3 the method fails.
        If the indices are out of bounds the method fails.
        If the indices are not increasing the method fails.
        """
        length = len(indices)
        if length >= 4:
            return 0
        indices_arr = np.array(indices)
        if (indices_arr < 0).any() or (indices_arr >= self.n_vars).any():
            raise QiskitError("Indices are out of bounds.")
        if length > 1 and (np.diff(indices_arr) <= 0).any():
            raise QiskitError("Indices are non-increasing.")

        if length == 0:
            return self.weight_0
        if length == 1:
            return self.weight_1[indices[0]]
        if length == 2:
            # sum(self.n_vars-j, {j, 1, indices[0]})
            offset_1 = int(indices[0] * self.n_vars -
                           ((indices[0] + 1) * indices[0])/2)
            offset_2 = int(indices[1] - indices[0] - 1)
            return self.weight_2[offset_1 + offset_2]

        # handle length = 3
        tmp_1 = self.n_vars - indices[0]
        offset_1 = int((tmp_1 - 3) * (tmp_1 - 2) * (tmp_1 - 1) / 6)
        tmp_2 = self.n_vars - indices[1]
        offset_2 = int((tmp_2 - 2) * (tmp_2 - 1) / 2)
        offset_3 = self.n_vars - indices[2]
        offset = int(self.n_vars * (self.n_vars - 1) * (self.n_vars - 2) / 6 -
                     offset_1 - offset_2 - offset_3)

        return self.weight_3[offset]

    def set_term(self, indices, value):
        """Set the value of a term given the list of variables.

        Example: indices = [] returns the constant
                 indices = [0] returns the coefficient of x_0
                 indices = [0,3] returns the coefficient of x_0x_3
                 indices = [0,1,3] returns the coefficient of x_0x_1x_3

        If len(indices) > 3 the method fails.
        If the indices are out of bounds the method fails.
        If the indices are not increasing the method fails.
        The value is reduced modulo 8.
        """
        length = len(indices)
        if length >= 4:
            return
        indices_arr = np.array(indices)
        if (indices_arr < 0).any() or (indices_arr >= self.n_vars).any():
            raise QiskitError("Indices are out of bounds.")
        if length > 1 and (np.diff(indices_arr) <= 0).any():
            raise QiskitError("Indices are non-increasing.")

        value = value % 8
        if length == 0:
            self.weight_0 = value
        elif length == 1:
            self.weight_1[indices[0]] = value
        elif length == 2:
            # sum(self.n_vars-j, {j, 1, indices[0]})
            offset_1 = int(indices[0] * self.n_vars -
                           ((indices[0] + 1) * indices[0])/2)
            offset_2 = int(indices[1] - indices[0] - 1)
            self.weight_2[offset_1 + offset_2] = value
        else:  # length = 3
            tmp_1 = self.n_vars - indices[0]
            offset_1 = int((tmp_1 - 3) * (tmp_1 - 2) * (tmp_1 - 1) / 6)
            tmp_2 = self.n_vars - indices[1]
            offset_2 = int((tmp_2 - 2) * (tmp_2 - 1) / 2)
            offset_3 = self.n_vars - indices[2]
            offset = int(self.n_vars * (self.n_vars - 1) * (self.n_vars - 2) / 6 -
                         offset_1 - offset_2 - offset_3)
            self.weight_3[offset] = value

    @property
    def key(self):
        """Return a string representation."""
        tup = (self.weight_0, tuple(self.weight_1),
               tuple(self.weight_2), tuple(self.weight_3))
        return str(tup)

    def __eq__(self, x):
        """Test equality."""
        return isinstance(x, SpecialPolynomial) and self.key == x.key

    def __str__(self):
        """Return formatted string representation."""
        out = str(self.weight_0)
        for i in range(self.n_vars):
            value = self.get_term([i])
            if value != 0:
                out += " + "
                if value != 1:
                    out += (str(value) + "*")
                out += ("x_" + str(i))
        for i in range(self.n_vars-1):
            for j in range(i+1, self.n_vars):
                value = self.get_term([i, j])
                if value != 0:
                    out += " + "
                    if value != 1:
                        out += (str(value) + "*")
                    out += ("x_" + str(i) + "*x_" + str(j))
        for i in range(self.n_vars-2):
            for j in range(i+1, self.n_vars-1):
                for k in range(j+1, self.n_vars):
                    value = self.get_term([i, j, k])
                    if value != 0:
                        out += " + "
                        if value != 1:
                            out += (str(value) + "*")
                        out += ("x_" + str(i) + "*x_" + str(j) +
                                "*x_" + str(k))
        return out


[docs]class CNOTDihedral(BaseOperator): """CNOT-dihedral Object Class. The CNOT-dihedral group on num_qubits qubits is generated by the gates CNOT, T and X. References: 1. Shelly Garion and Andrew W. Cross, *On the structure of the CNOT-Dihedral group*, `arXiv:2006.12042 [quant-ph] <https://arxiv.org/abs/2006.12042>`_ 2. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, *Scalable randomised benchmarking of non-Clifford gates*, npj Quantum Inf 2, 16012 (2016). """
[docs] def __init__(self, data, validate=True): """Initialize a CNOTDihedral operator object.""" # Initialize from another CNOTDihedral by sharing the underlying # poly, linear and shift if isinstance(data, CNOTDihedral): self.linear = data.linear self.shift = data.shift self.poly = data.poly # Initialize from ScalarOp as N-qubit identity discarding any global phase elif isinstance(data, ScalarOp): if not data.is_unitary() or set(data._input_dims) != {2} or \ data.num_qubits is None: raise QiskitError("Can only initialize from N-qubit identity ScalarOp.") self._num_qubits = data.num_qubits # phase polynomial self.poly = SpecialPolynomial(self._num_qubits) # n x n invertible matrix over Z_2 self.linear = np.eye(self._num_qubits, dtype=np.int8) # binary shift, n coefficients in Z_2 self.shift = np.zeros(self._num_qubits, dtype=np.int8) # Initialize from a QuantumCircuit or Instruction object elif isinstance(data, (QuantumCircuit, Instruction)): self._num_qubits = data.num_qubits elem = self.from_circuit(data) self.poly = elem.poly self.linear = elem.linear self.shift = elem.shift # Construct the identity element on num_qubits qubits. elif isinstance(data, int): self._num_qubits = data # phase polynomial self.poly = SpecialPolynomial(self._num_qubits) # n x n invertible matrix over Z_2 self.linear = np.eye(self._num_qubits, dtype=np.int8) # binary shift, n coefficients in Z_2 self.shift = np.zeros(self._num_qubits, dtype=np.int8) elif isinstance(data, Pauli): self._num_qubits = data.num_qubits elem = self.from_circuit(data.to_instruction()) self.poly = elem.poly self.linear = elem.linear self.shift = elem.shift # Initialize BaseOperator dims = self._num_qubits * (2,) super().__init__(dims, dims) # Validate the CNOTDihedral element if validate and not self.is_cnotdihedral(): raise QiskitError('Invalid CNOTDihedsral element.')
def _z2matmul(self, left, right): """Compute product of two n x n z2 matrices.""" prod = np.mod(np.dot(left, right), 2) return prod def _z2matvecmul(self, mat, vec): """Compute mat*vec of n x n z2 matrix and vector.""" prod = np.mod(np.dot(mat, vec), 2) return prod def __mul__(self, other): """Left multiplication self * other.""" if self.num_qubits != other.num_qubits: raise QiskitError("Multiplication on different number of qubits.") result = CNOTDihedral(self.num_qubits) result.shift = [(x[0] + x[1]) % 2 for x in zip(self._z2matvecmul(self.linear, other.shift), self.shift)] result.linear = self._z2matmul(self.linear, other.linear) # Compute x' = B1*x + c1 using the p_j identity new_vars = [] for i in range(self.num_qubits): support = np.arange(self.num_qubits)[np.nonzero(other.linear[i])] poly = SpecialPolynomial(self.num_qubits) poly.set_pj(support) if other.shift[i] == 1: poly = -1 * poly poly.weight_0 = (poly.weight_0 + 1) % 8 new_vars.append(poly) # p' = p1 + p2(x') result.poly = other.poly + self.poly.evaluate(new_vars) return result def __rmul__(self, other): """Right multiplication other * self.""" if self.num_qubits != other.num_qubits: raise QiskitError("Multiplication on different number of qubits.") result = CNOTDihedral(self.num_qubits) result.shift = [(x[0] + x[1]) % 2 for x in zip(self._z2matvecmul(other.linear, self.shift), other.shift)] result.linear = self._z2matmul(other.linear, self.linear) # Compute x' = B1*x + c1 using the p_j identity new_vars = [] for i in range(self.num_qubits): support = np.arange(self.num_qubits)[np.nonzero(self.linear[i])] poly = SpecialPolynomial(self.num_qubits) poly.set_pj(support) if other.shift[i] == 1: poly = -1 * poly poly.weight_0 = (poly.weight_0 + 1) % 8 new_vars.append(poly) # p' = p1 + p2(x') result.poly = self.poly + other.poly.evaluate(new_vars) return result @property def key(self): """Return a string representation of a CNOT-dihedral object.""" tup = (self.poly.key, tuple(map(tuple, self.linear)), tuple(self.shift)) return str(tup) def __eq__(self, x): """Test equality.""" return isinstance(x, CNOTDihedral) and self.key == x.key
[docs] def cnot(self, i, j): """Apply a CNOT gate to this element. Left multiply the element by CNOT_{i,j}. """ if not 0 <= i < self.num_qubits or not 0 <= j < self.num_qubits: raise QiskitError("cnot qubits are out of bounds.") self.linear[j] = (self.linear[i] + self.linear[j]) % 2 self.shift[j] = (self.shift[i] + self.shift[j]) % 2
[docs] def phase(self, k, i): """Apply an k-th power of T to this element. Left multiply the element by T_i^k. """ if not 0 <= i < self.num_qubits: raise QiskitError("phase qubit out of bounds.") # If the kth bit is flipped, conjugate this gate if self.shift[i] == 1: k = (7*k) % 8 # Take all subsets \alpha of the support of row i # of weight up to 3 and add k*(-2)**(|\alpha| - 1) mod 8 # to the corresponding term. support = np.arange(self.num_qubits)[np.nonzero(self.linear[i])] subsets_2 = itertools.combinations(support, 2) subsets_3 = itertools.combinations(support, 3) for j in support: value = self.poly.get_term([j]) self.poly.set_term([j], (value + k) % 8) for j in subsets_2: value = self.poly.get_term(list(j)) self.poly.set_term(list(j), (value + -2 * k) % 8) for j in subsets_3: value = self.poly.get_term(list(j)) self.poly.set_term(list(j), (value + 4 * k) % 8)
[docs] def flip(self, i): """Apply X to this element. Left multiply the element by X_i. """ if not 0 <= i < self.num_qubits: raise QiskitError("flip qubit out of bounds.") self.shift[i] = (self.shift[i] + 1) % 2
def __str__(self): """Return formatted string representation.""" out = "phase polynomial = \n" out += str(self.poly) out += "\naffine function = \n" out += " (" for row in range(self.num_qubits): wrote = False for col in range(self.num_qubits): if self.linear[row][col] != 0: if wrote: out += (" + x_" + str(col)) else: out += ("x_" + str(col)) wrote = True if self.shift[row] != 0: out += " + 1" if row != self.num_qubits - 1: out += "," out += ")\n" return out def _add(self, other, qargs=None): """Not implemented.""" raise NotImplementedError( "{} does not support addition".format(type(self))) def _multiply(self, other): """Not implemented.""" raise NotImplementedError( "{} does not support scalar multiplication".format(type(self)))
[docs] def to_circuit(self): """Return a QuantumCircuit implementing the CNOT-Dihedral element. Return: QuantumCircuit: a circuit implementation of the CNOTDihedral object. Remark: Decompose 1 and 2-qubit CNOTDihedral elements. References: 1. Shelly Garion and Andrew W. Cross, *On the structure of the CNOT-Dihedral group*, `arXiv:2006.12042 [quant-ph] <https://arxiv.org/abs/2006.12042>`_ 2. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, *Scalable randomised benchmarking of non-Clifford gates*, npj Quantum Inf 2, 16012 (2016). """ return decompose_cnotdihedral(self)
[docs] def to_instruction(self): """Return a Gate instruction implementing the CNOTDihedral object.""" return self.to_circuit().to_gate()
[docs] def from_circuit(self, circuit): """Initialize from a QuantumCircuit or Instruction. Args: circuit (QuantumCircuit or ~qiskit.circuit.Instruction): instruction to initialize. Returns: CNOTDihedral: the CNOTDihedral object for the circuit. Raises: QiskitError: if the input instruction is not CNOTDihedral or contains classical register instruction. """ if not isinstance(circuit, (QuantumCircuit, Instruction)): raise QiskitError("Input must be a QuantumCircuit or Instruction") # Convert circuit to an instruction if isinstance(circuit, QuantumCircuit): circuit = circuit.to_instruction() # Initialize an identity CNOTDihedral object elem = CNOTDihedral(self.num_qubits) append_circuit(elem, circuit) return elem
[docs] def to_matrix(self): """Convert operator to Numpy matrix.""" return self.to_operator().data
[docs] def to_operator(self): """Convert to an Operator object.""" return Operator(self.to_instruction())
[docs] def compose(self, other, qargs=None, front=False): """Return the composed operator. Args: other (CNOTDihedral): an operator object. qargs (None): using specific qargs is not implemented for this operator. front (bool): if True compose using right operator multiplication, instead of left multiplication [default: False]. Returns: CNOTDihedral: The operator self @ other. Raises: QiskitError: if operators have incompatible dimensions for composition. NotImplementedError: if qargs is not None. Additional Information: Composition (``@``) is defined as `left` matrix multiplication for matrix operators. That is that ``A @ B`` is equal to ``B * A``. Setting ``front=True`` returns `right` matrix multiplication ``A * B`` and is equivalent to the :meth:`dot` method. """ if qargs is not None: raise NotImplementedError("compose method does not support qargs.") if self.num_qubits != other.num_qubits: raise QiskitError("Incompatible dimension for composition") if front: other = self * other else: other = other * self other.poly.weight_0 = 0 # set global phase return other
[docs] def dot(self, other, qargs=None): """Return the right multiplied operator self * other. Args: other (CNOTDihedral): an operator object. qargs (None): using specific qargs is not implemented for this operator. Returns: CNOTDihedral: The operator self * other. Raises: QiskitError: if operators have incompatible dimensions for composition. NotImplementedError: if qargs is not None. """ if qargs is not None: raise NotImplementedError("dot method does not support qargs.") if self.num_qubits != other.num_qubits: raise QiskitError("Incompatible dimension for composition") other = self * other other.poly.weight_0 = 0 # set global phase return other
def _tensor_product(self, other, reverse=False): """Returns the tensor product operator. Args: other (CNOTDihedral): another operator subclass object. reverse (bool): If False return self tensor other, if True return other tensor self [Default: False]. Returns: CNOTDihedral: the tensor product operator: self tensor other. Raises: QiskitError: if other cannot be converted into an CNOTDihderal object. """ if not isinstance(other, CNOTDihedral): raise QiskitError("Tensored element is not a CNOTDihderal object.") if reverse: elem0 = self elem1 = other else: elem0 = other elem1 = self result = CNOTDihedral(elem0.num_qubits + elem1.num_qubits) linear = np.block([[elem0.linear, np.zeros((elem0.num_qubits, elem1.num_qubits), dtype=np.int8)], [np.zeros((elem1.num_qubits, elem0.num_qubits), dtype=np.int8), elem1.linear]]) result.linear = linear shift = np.block([elem0.shift, elem1.shift]) result.shift = shift for i in range(elem0.num_qubits): value = elem0.poly.get_term([i]) result.poly.set_term([i], value) for j in range(i): value = elem0.poly.get_term([j, i]) result.poly.set_term([j, i], value) for k in range(j): value = elem0.poly.get_term([k, j, i]) result.poly.set_term([k, j, i], value) for i in range(elem1.num_qubits): value = elem1.poly.get_term([i]) result.poly.set_term([i + elem0.num_qubits], value) for j in range(i): value = elem1.poly.get_term([j, i]) result.poly.set_term([j + elem0.num_qubits, i + elem0.num_qubits], value) for k in range(j): value = elem1.poly.get_term([k, j, i]) result.poly.set_term([k + elem0.num_qubits, j + elem0.num_qubits, i + elem0.num_qubits], value) return result
[docs] def tensor(self, other): """Return the tensor product operator: self tensor other. Args: other (CNOTDihedral): an operator subclass object. Returns: CNOTDihedral: the tensor product operator: self tensor other. """ return self._tensor_product(other, reverse=True)
[docs] def expand(self, other): """Return the tensor product operator: other tensor self. Args: other (CNOTDihedral): an operator subclass object. Returns: CNOTDihedral: the tensor product operator: other tensor other. """ return self._tensor_product(other, reverse=False)
[docs] def adjoint(self): """Return the conjugate transpose of the CNOTDihedral element""" circ = self.to_instruction() result = self.from_circuit(circ.inverse()) return result
[docs] def conjugate(self): """Return the conjugate of the CNOTDihedral element.""" circ = self.to_instruction() new_circ = QuantumCircuit(self.num_qubits) qargs = list(range(self.num_qubits)) for instr, qregs, _ in circ.definition: new_qubits = [qargs[tup.index] for tup in qregs] if instr.name == 'u1': params = 2 * np.pi - instr.params[0] instr.params[0] = params new_circ.append(instr, new_qubits) else: new_circ.append(instr, new_qubits) result = self.from_circuit(new_circ) return result
[docs] def transpose(self): """Return the transpose of the CNOT-Dihedral element.""" circ = self.to_instruction() result = self.from_circuit(circ.reverse_ops()) return result
[docs] def is_cnotdihedral(self): """Return True if input is a CNOTDihedral element.""" if self.poly.weight_0 != 0 or \ len(self.poly.weight_1) != self.num_qubits or \ len(self.poly.weight_2) != int(self.num_qubits * (self.num_qubits - 1) / 2) \ or len(self.poly.weight_3) != int(self.num_qubits * (self.num_qubits - 1) * (self.num_qubits - 2) / 6): return False if (self.linear).shape != (self.num_qubits, self.num_qubits) or \ len(self.shift) != self.num_qubits or \ not np.allclose((np.linalg.det(self.linear) % 2), 1): return False if not (set(self.poly.weight_1.flatten())).issubset({0, 1, 2, 3, 4, 5, 6, 7}) or \ not (set(self.poly.weight_2.flatten())).issubset({0, 2, 4, 6}) or \ not (set(self.poly.weight_3.flatten())).issubset({0, 4}): return False if not (set(self.shift.flatten())).issubset({0, 1}) or \ not (set(self.linear.flatten())).issubset({0, 1}): return False return True
def make_dict_0(num_qubits): """Make the zero-CNOT dictionary. This returns the dictionary of CNOT-dihedral elements on num_qubits using no CNOT gates. There are 16^n elements. The key is a unique string and the value is a pair: a CNOTDihedral object and a list of gates as a string. """ obj = {} for i in range(16**num_qubits): elem = CNOTDihedral(num_qubits) circ = [] num = i for j in range(num_qubits): xpower = int(num % 2) tpower = int(((num - num % 2) / 2) % 8) if tpower > 0: elem.phase(tpower, j) circ.append(("u1", tpower, j)) if xpower == 1: elem.flip(j) circ.append(("x", j)) num = int((num - num % 16) / 16) obj[elem.key] = (elem, circ) return obj def make_dict_next(num_qubits, dicts_prior): """Make the m+1 CNOT dictionary given the prior dictionaries. This returns the dictionary of CNOT-dihedral elements on num_qubits using m+1 CNOT gates given the list of dictionaries of circuits using 0, 1, ..., m CNOT gates. There are no more than 4*(n^2 - n)*|G(m)| elements. The key is a unique string and the value is a pair: a CNOTDihedral object and a list of gates as a string. """ obj = {} for elem, circ in dicts_prior[-1].values(): for i in range(num_qubits): for j in range(num_qubits): if i != j: for tpower in range(4): new_elem = copy.deepcopy(elem) new_circ = copy.deepcopy(circ) new_elem.cnot(i, j) new_circ.append(("cx", i, j)) if tpower > 0: new_elem.phase(tpower, j) new_circ.append(("u1", tpower, j)) if True not in [(new_elem.key in d) for d in dicts_prior] \ and new_elem.key not in obj: obj[new_elem.key] = (new_elem, new_circ) return obj def append_circuit(elem, circuit, qargs=None): """Update a CNOTDihedral element inplace by applying a CNOTDihedral circuit. Args: elem (CNOTDihedral): the CNOTDihedral element to update. circuit (QuantumCircuit or Instruction): the gate or composite gate to apply. qargs (list or None): The qubits to apply gates to. Returns: CNOTDihedral: the updated CNOTDihedral. Raises: QiskitError: if input gates cannot be decomposed into CNOTDihedral gates. """ if qargs is None: qargs = list(range(elem.num_qubits)) if isinstance(circuit, QuantumCircuit): gate = circuit.to_instruction() else: gate = circuit # Handle cx since it is a basic gate, and cannot be decomposed, # so gate.definition = None if gate.name == 'cx': if len(qargs) != 2: raise QiskitError("Invalid qubits for 2-qubit gate cx.") elem.cnot(qargs[0], qargs[1]) return elem if gate.definition is None: raise QiskitError('Cannot apply Instruction: {}'.format(gate.name)) if not isinstance(gate.definition, QuantumCircuit): raise QiskitError('{} instruction definition is {}; expected QuantumCircuit'.format( gate.name, type(gate.definition))) for instr, qregs, _ in gate.definition: # Get the integer position of the flat register new_qubits = [qargs[tup.index] for tup in qregs] if (instr.name == 'x' or gate.name == 'x'): if len(new_qubits) != 1: raise QiskitError("Invalid qubits for 1-qubit gate x.") elem.flip(new_qubits[0]) elif (instr.name == 'z' or gate.name == 'z'): if len(new_qubits) != 1: raise QiskitError("Invalid qubits for 1-qubit gate z.") elem.phase(4, new_qubits[0]) elif (instr.name == 'y' or gate.name == 'y'): if len(new_qubits) != 1: raise QiskitError("Invalid qubits for 1-qubit gate y.") elem.flip(new_qubits[0]) elem.phase(4, new_qubits[0]) elif (instr.name == 'u1' or gate.name == 'u1'): if (len(new_qubits) != 1 or len(instr.params) != 1): raise QiskitError("Invalid qubits or params for 1-qubit gate u1.") elem.phase(int(4 * instr.params[0] / np.pi), new_qubits[0]) elif (instr.name == 'cx' or gate.name == 'cx'): if len(new_qubits) != 2: raise QiskitError("Invalid qubits for 2-qubit gate cx.") elem.cnot(new_qubits[0], new_qubits[1]) elif (instr.name == 'cz' or gate.name == 'cz'): if len(new_qubits) != 2: raise QiskitError("Invalid qubits for 2-qubit gate cz.") elem.phase(7, new_qubits[1]) elem.phase(7, new_qubits[0]) elem.cnot(new_qubits[1], new_qubits[0]) elem.phase(2, new_qubits[0]) elem.cnot(new_qubits[1], new_qubits[0]) elem.phase(7, new_qubits[1]) elem.phase(7, new_qubits[0]) elif (instr.name == 'id' or gate.name == 'id'): pass else: raise QiskitError('Not a CNOT-Dihedral gate: {}'.format(gate.name)) return elem def decompose_cnotdihedral(elem): """Decompose a CNOTDihedral element into a QuantumCircuit. Args: elem (CNOTDihedral): a CNOTDihedral element. Return: QuantumCircuit: a circuit implementation of the CNOTDihedral element. References: 1. Shelly Garion and Andrew W. Cross, *On the structure of the CNOT-Dihedral group*, `arXiv:2006.12042 [quant-ph] <https://arxiv.org/abs/2006.12042>`_ 2. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, *Scalable randomised benchmarking of non-Clifford gates*, npj Quantum Inf 2, 16012 (2016). """ num_qubits = elem.num_qubits if num_qubits < 3: return decompose_cnotdihedral_2_qubits(elem) return decompose_cnotdihedral_general(elem) def decompose_cnotdihedral_2_qubits(elem): """Decompose a CNOTDihedral element into a QuantumCircuit. Args: elem (CNOTDihedral): a CNOTDihedral element. Return: QuantumCircuit: a circuit implementation of the CNOTDihedral element. Remark: Decompose 1 and 2-qubit CNOTDihedral elements. Raises: QiskitError: if the element in not 1 or 2-qubit CNOTDihedral. References: 1. Shelly Garion and Andrew W. Cross, *On the structure of the CNOT-Dihedral group*, `arXiv:2006.12042 [quant-ph] <https://arxiv.org/abs/2006.12042>`_ 2. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, *Scalable randomised benchmarking of non-Clifford gates*, npj Quantum Inf 2, 16012 (2016). """ circuit = QuantumCircuit(elem.num_qubits) if elem.num_qubits > 2: raise QiskitError("Cannot decompose a CNOT-Dihedral element with more than 2 qubits. " "use decompose_cnotdihedral_general function instead.") if elem.num_qubits == 1: if elem.poly.weight_0 != 0 or elem.linear != [[1]]: raise QiskitError("1-qubit element in not CNOT-Dihedral .") tpow0 = elem.poly.weight_1[0] xpow0 = elem.shift[0] if tpow0 > 0: circuit.u1(tpow0 * np.pi / 4, 0) if xpow0 == 1: circuit.x(0) if (tpow0 == 0 and xpow0 == 0): circuit.id(0) return circuit # case elem.num_qubits == 2: if elem.poly.weight_0 != 0: raise QiskitError("2-qubit element in not CNOT-Dihedral .") weight_1 = elem.poly.weight_1 weight_2 = elem.poly.weight_2 linear = elem.linear shift = elem.shift # CS subgroup if (linear == [[1, 0], [0, 1]]).all(): [xpow0, xpow1] = shift # Dihedral class if weight_2 == [0]: [tpow0, tpow1] = weight_1 if tpow0 > 0: circuit.u1(tpow0 * np.pi / 4, 0) if xpow0 == 1: circuit.x(0) if tpow1 > 0: circuit.u1(tpow1 * np.pi / 4, 1) if xpow1 == 1: circuit.x(1) if (tpow0 == 0 and tpow1 == 0 and xpow0 == 0 and xpow1 == 0): circuit.id(0) circuit.id(1) # CS-like class if ((weight_2 == [2] and xpow0 == xpow1) or (weight_2 == [6] and xpow0 != xpow1)): tpow0 = (weight_1[0] - 2 * xpow1 - 4 * xpow0 * xpow1) % 8 tpow1 = (weight_1[1] - 2 * xpow0 - 4 * xpow0 * xpow1) % 8 if tpow0 > 0: circuit.u1(tpow0 * np.pi / 4, 0) if xpow0 == 1: circuit.x(0) if tpow1 > 0: circuit.u1(tpow1 * np.pi / 4, 1) if xpow1 == 1: circuit.x(1) # CS gate is implemented using 2 CX gates circuit.u1(np.pi / 4, 0) circuit.u1(np.pi / 4, 1) circuit.cx(0, 1) circuit.u1(7 * np.pi / 4, 1) circuit.cx(0, 1) # CSdg-like class if ((weight_2 == [6] and xpow0 == xpow1) or (weight_2 == [2] and xpow0 != xpow1)): tpow0 = (weight_1[0] - 6 * xpow1 - 4 * xpow0 * xpow1) % 8 tpow1 = (weight_1[1] - 6 * xpow0 - 4 * xpow0 * xpow1) % 8 if tpow0 > 0: circuit.u1(tpow0 * np.pi / 4, 0) if xpow0 == 1: circuit.x(0) if tpow1 > 0: circuit.u1(tpow1 * np.pi / 4, 1) if xpow1 == 1: circuit.x(1) # CSdg gate is implemented using 2 CX gates circuit.u1(7 * np.pi / 4, 0) circuit.u1(7 * np.pi / 4, 1) circuit.cx(0, 1) circuit.u1(np.pi / 4, 1) circuit.cx(0, 1) # CZ-like class if weight_2 == [4]: tpow0 = (weight_1[0] - 4 * xpow1) % 8 tpow1 = (weight_1[1] - 4 * xpow0) % 8 if tpow0 > 0: circuit.u1(tpow0 * np.pi / 4, 0) if xpow0 == 1: circuit.x(0) if tpow1 > 0: circuit.u1(tpow1 * np.pi / 4, 1) if xpow1 == 1: circuit.x(1) # CZ gate is implemented using 2 CX gates circuit.cz(1, 0) # CX01-like class if (linear == [[1, 0], [1, 1]]).all(): xpow0 = shift[0] xpow1 = (shift[1] + xpow0) % 2 if xpow0 == xpow1: m = ((8 - weight_2[0]) / 2) % 4 tpow0 = (weight_1[0] - m) % 8 tpow1 = (weight_1[1] - m) % 8 else: m = (weight_2[0] / 2) % 4 tpow0 = (weight_1[0] + m) % 8 tpow1 = (weight_1[1] + m) % 8 if tpow0 > 0: circuit.u1(tpow0 * np.pi / 4, 0) if xpow0 == 1: circuit.x(0) if tpow1 > 0: circuit.u1(tpow1 * np.pi / 4, 1) if xpow1 == 1: circuit.x(1) circuit.cx(0, 1) if m > 0: circuit.u1(m * np.pi / 4, 1) # CX10-like class if (linear == [[1, 1], [0, 1]]).all(): xpow1 = shift[1] xpow0 = (shift[0] + xpow1) % 2 if xpow0 == xpow1: m = ((8 - weight_2[0]) / 2) % 4 tpow0 = (weight_1[0] - m) % 8 tpow1 = (weight_1[1] - m) % 8 else: m = (weight_2[0] / 2) % 4 tpow0 = (weight_1[0] + m) % 8 tpow1 = (weight_1[1] + m) % 8 if tpow0 > 0: circuit.u1(tpow0 * np.pi / 4, 0) if xpow0 == 1: circuit.x(0) if tpow1 > 0: circuit.u1(tpow1 * np.pi / 4, 1) if xpow1 == 1: circuit.x(1) circuit.cx(1, 0) if m > 0: circuit.u1(m * np.pi / 4, 0) # CX01*CX10-like class if (linear == [[0, 1], [1, 1]]).all(): xpow1 = shift[0] xpow0 = (shift[1] + xpow1) % 2 if xpow0 == xpow1: m = ((8 - weight_2[0]) / 2) % 4 tpow0 = (weight_1[0] - m) % 8 tpow1 = (weight_1[1] - m) % 8 else: m = (weight_2[0] / 2) % 4 tpow0 = (weight_1[0] + m) % 8 tpow1 = (weight_1[1] + m) % 8 if tpow0 > 0: circuit.u1(tpow0 * np.pi / 4, 0) if xpow0 == 1: circuit.x(0) if tpow1 > 0: circuit.u1(tpow1 * np.pi / 4, 1) if xpow1 == 1: circuit.x(1) circuit.cx(0, 1) circuit.cx(1, 0) if m > 0: circuit.u1(m * np.pi / 4, 1) # CX10*CX01-like class if (linear == [[1, 1], [1, 0]]).all(): xpow0 = shift[1] xpow1 = (shift[0] + xpow0) % 2 if xpow0 == xpow1: m = ((8 - weight_2[0]) / 2) % 4 tpow0 = (weight_1[0] - m) % 8 tpow1 = (weight_1[1] - m) % 8 else: m = (weight_2[0] / 2) % 4 tpow0 = (weight_1[0] + m) % 8 tpow1 = (weight_1[1] + m) % 8 if tpow0 > 0: circuit.u1(tpow0 * np.pi / 4, 0) if xpow0 == 1: circuit.x(0) if tpow1 > 0: circuit.u1(tpow1 * np.pi / 4, 1) if xpow1 == 1: circuit.x(1) circuit.cx(1, 0) circuit.cx(0, 1) if m > 0: circuit.u1(m * np.pi / 4, 0) # CX01*CX10*CX01-like class if (linear == [[0, 1], [1, 0]]).all(): xpow0 = shift[1] xpow1 = shift[0] if xpow0 == xpow1: m = ((8 - weight_2[0]) / 2) % 4 tpow0 = (weight_1[0] - m) % 8 tpow1 = (weight_1[1] - m) % 8 else: m = (weight_2[0] / 2) % 4 tpow0 = (weight_1[0] + m) % 8 tpow1 = (weight_1[1] + m) % 8 if tpow0 > 0: circuit.u1(tpow0 * np.pi / 4, 0) if xpow0 == 1: circuit.x(0) if tpow1 > 0: circuit.u1(tpow1 * np.pi / 4, 1) if xpow1 == 1: circuit.x(1) circuit.cx(0, 1) circuit.cx(1, 0) if m > 0: circuit.u1(m * np.pi / 4, 1) circuit.cx(0, 1) return circuit def decompose_cnotdihedral_general(elem): """Decompose a CNOTDihedral element into a QuantumCircuit. Args: elem (CNOTDihedral): a CNOTDihedral element. Return: QuantumCircuit: a circuit implementation of the CNOTDihedral element. Remark: Decompose general CNOTDihedral elements. The number of CNOT gates is not necessarily optimal. Raises: QiskitError: if the element could not be decomposed into a circuit. References: 1. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, *Scalable randomised benchmarking of non-Clifford gates*, npj Quantum Inf 2, 16012 (2016). """ num_qubits = elem.num_qubits circuit = QuantumCircuit(num_qubits) # Make a copy of the CNOTDihedral element as we are going to # reduce it to an identity elem_cpy = elem.copy() if not np.allclose((np.linalg.det(elem_cpy.linear) % 2), 1): raise QiskitError("Linear part is not invertible.") # Do x gate for each qubit i where shift[i]=1 for i in range(num_qubits): if elem.shift[i]: circuit.x(i) elem_cpy.flip(i) # Do Gauss elimination on the linear part by adding cx gates for i in range(num_qubits): # set i-th element to be 1 if not elem_cpy.linear[i][i]: for j in range(i+1, num_qubits): if elem_cpy.linear[j][i]: # swap qubits i and j circuit.cx(j, i) circuit.cx(i, j) circuit.cx(j, i) elem_cpy.cnot(j, i) elem_cpy.cnot(i, j) elem_cpy.cnot(j, i) break # make all the other elements in column i zero for j in range(num_qubits): if j != i: if elem_cpy.linear[j][i]: circuit.cx(i, j) elem_cpy.cnot(i, j) if not (elem_cpy.shift == np.zeros(num_qubits)).all() or \ not (elem_cpy.linear == np.eye(num_qubits)).all(): raise QiskitError("Cannot do Gauss elimination on linear part.") new_elem = CNOTDihedral(num_qubits) new_circuit = QuantumCircuit(num_qubits) # Do cx and u1 gates to construct all monomials of weight 3 for i in range(num_qubits): for j in range(i+1, num_qubits): for k in range(j+1, num_qubits): if elem_cpy.poly.get_term([i, j, k]) != 0: new_elem.cnot(i, k) new_elem.cnot(j, k) new_elem.phase(1, k) new_elem.cnot(i, k) new_elem.cnot(j, k) new_circuit.cx(i, k) new_circuit.cx(j, k) new_circuit.u1(np.pi / 4, k) new_circuit.cx(i, k) new_circuit.cx(j, k) # Do cx and u1 gates to construct all monomials of weight 2 for i in range(num_qubits): for j in range(i+1, num_qubits): tpow1 = elem_cpy.poly.get_term([i, j]) tpow2 = new_elem.poly.get_term([i, j]) tpow = ((tpow2 - tpow1) / 2) % 4 if tpow != 0: new_elem.cnot(i, j) new_elem.phase(tpow, j) new_elem.cnot(i, j) new_circuit.cx(i, j) new_circuit.u1(tpow * np.pi / 4, j) new_circuit.cx(i, j) # Do u1 gates to construct all monomials of weight 1 for i in range(num_qubits): tpow1 = elem_cpy.poly.get_term([i]) tpow2 = new_elem.poly.get_term([i]) tpow = (tpow1 - tpow2) % 8 if tpow != 0: new_elem.phase(tpow, i) new_circuit.u1(tpow * np.pi / 4, i) if elem.poly != new_elem.poly: raise QiskitError("Could not recover phase polynomial.") inv_circuit = circuit.inverse() return new_circuit.combine(inv_circuit) def random_cnotdihedral(num_qubits, seed=None): """Return a random CNOTDihedral element. Args: num_qubits (int): the number of qubits for the CNOTDihedral object. seed (int or RandomState): Optional. Set a fixed seed or generator for RNG. Returns: CNOTDihedral: a random CNOTDihedral element. """ if seed is None: rng = np.random elif isinstance(seed, RandomState): rng = seed else: rng = RandomState(seed) elem = CNOTDihedral(num_qubits) # Random phase polynomial weights weight_1 = rng.randint(8, size=num_qubits) elem.poly.weight_1 = weight_1 weight_2 = 2 * rng.randint(4, size=int(num_qubits * (num_qubits - 1) / 2)) elem.poly.weight_2 = weight_2 weight_3 = 4 * rng.randint(2, size=int(num_qubits * (num_qubits - 1) * (num_qubits - 2) / 6)) elem.poly.weight_3 = weight_3 # Random affine function # Random invertible binary matrix det = 0 while np.allclose(det, 0) or np.allclose(det, 2): linear = rng.randint(2, size=(num_qubits, num_qubits)) det = np.linalg.det(linear) % 2 elem.linear = linear # Random shift shift = rng.randint(2, size=num_qubits) elem.shift = shift return elem

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.