qiskit.chemistry.algorithms.QEomVQE¶
-
class
QEomVQE
(operator, var_form, optimizer, num_orbitals, num_particles, initial_point=None, max_evals_grouped=1, callback=None, qubit_mapping='parity', two_qubit_reduction=True, is_eom_matrix_symmetric=True, active_occupied=None, active_unoccupied=None, se_list=None, de_list=None, z2_symmetries=None, untapered_op=None, aux_operators=None, quantum_instance=None)[source]¶ QEomVQE algorithm
- Parameters
operator (
LegacyBaseOperator
) – qubit operatorvar_form (
Union
[QuantumCircuit
,VariationalForm
]) – parameterized variational form.optimizer (
Optimizer
) – the classical optimization algorithm.num_orbitals (
int
) – total number of spin orbitals, has a min. value of 1.num_particles (
Union
[List
[int
],int
]) – number of particles, if it is a list, the first number is alpha and the second number if beta.initial_point (
Optional
[ndarray
]) – optimizer initial point, 1-D vectormax_evals_grouped (
int
) – max number of evaluations performed simultaneouslycallback (
Optional
[Callable
[[int
,ndarray
,float
,float
],None
]]) – a callback that can access the intermediate data during the optimization. Internally, four arguments are provided as follows the index of evaluation, parameters of variational form, evaluated mean, evaluated standard deviation.qubit_mapping (
str
) – qubit mapping typetwo_qubit_reduction (
bool
) – two qubit reduction is applied or notis_eom_matrix_symmetric (
bool
) – is EoM matrix symmetricactive_occupied (
Optional
[List
[int
]]) – list of occupied orbitals to include, indices are 0 to n where n is num particles // 2active_unoccupied (
Optional
[List
[int
]]) – list of unoccupied orbitals to include, indices are 0 to m where m is (num_orbitals - num particles) // 2se_list (
Optional
[List
[List
[int
]]]) – single excitation list, overwrite the setting in active spacede_list (
Optional
[List
[List
[int
]]]) – double excitation list, overwrite the setting in active spacez2_symmetries (
Optional
[Z2Symmetries
]) – represent the Z2 symmetriesuntapered_op (
Optional
[LegacyBaseOperator
]) – if the operator is tapered, we need untapered operator during building element of EoM matrixaux_operators (
Optional
[List
[LegacyBaseOperator
]]) – Auxiliary operators to be evaluated at each eigenvaluequantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – Quantum Instance or Backend
- Raises
ValueError – invalid parameter
-
__init__
(operator, var_form, optimizer, num_orbitals, num_particles, initial_point=None, max_evals_grouped=1, callback=None, qubit_mapping='parity', two_qubit_reduction=True, is_eom_matrix_symmetric=True, active_occupied=None, active_unoccupied=None, se_list=None, de_list=None, z2_symmetries=None, untapered_op=None, aux_operators=None, quantum_instance=None)[source]¶ - Parameters
operator (
LegacyBaseOperator
) – qubit operatorvar_form (
Union
[QuantumCircuit
,VariationalForm
]) – parameterized variational form.optimizer (
Optimizer
) – the classical optimization algorithm.num_orbitals (
int
) – total number of spin orbitals, has a min. value of 1.num_particles (
Union
[List
[int
],int
]) – number of particles, if it is a list, the first number is alpha and the second number if beta.initial_point (
Optional
[ndarray
]) – optimizer initial point, 1-D vectormax_evals_grouped (
int
) – max number of evaluations performed simultaneouslycallback (
Optional
[Callable
[[int
,ndarray
,float
,float
],None
]]) – a callback that can access the intermediate data during the optimization. Internally, four arguments are provided as follows the index of evaluation, parameters of variational form, evaluated mean, evaluated standard deviation.qubit_mapping (
str
) – qubit mapping typetwo_qubit_reduction (
bool
) – two qubit reduction is applied or notis_eom_matrix_symmetric (
bool
) – is EoM matrix symmetricactive_occupied (
Optional
[List
[int
]]) – list of occupied orbitals to include, indices are 0 to n where n is num particles // 2active_unoccupied (
Optional
[List
[int
]]) – list of unoccupied orbitals to include, indices are 0 to m where m is (num_orbitals - num particles) // 2se_list (
Optional
[List
[List
[int
]]]) – single excitation list, overwrite the setting in active spacede_list (
Optional
[List
[List
[int
]]]) – double excitation list, overwrite the setting in active spacez2_symmetries (
Optional
[Z2Symmetries
]) – represent the Z2 symmetriesuntapered_op (
Optional
[LegacyBaseOperator
]) – if the operator is tapered, we need untapered operator during building element of EoM matrixaux_operators (
Optional
[List
[LegacyBaseOperator
]]) – Auxiliary operators to be evaluated at each eigenvaluequantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – Quantum Instance or Backend
- Raises
ValueError – invalid parameter
Methods
__init__
(operator, var_form, optimizer, …)- type operator
LegacyBaseOperator
set parameterized circuits to None
compute_minimum_eigenvalue
([operator, …])Computes minimum eigenvalue.
construct_circuit
(parameter)Return the circuits used to compute the expectation value.
construct_expectation
(parameter)Generate the ansatz circuit and expectation value measurement, and return their runnable composition.
find_minimum
([initial_point, var_form, …])Optimize to find the minimum cost value.
Get the circuit with the optimal parameters.
Get the minimal cost or energy found by the VQE.
Get the simulation outcome of the optimal circuit.
get_prob_vector_for_params
(…[, …])Helper function to get probability vectors for a set of params
get_probabilities_for_counts
(counts)get probabilities for counts
Preparing the setting of VQE into a string.
run
([quantum_instance])Execute the algorithm with selected backend.
set_backend
(backend, **kwargs)Sets backend with configuration.
Whether computing the expectation value of auxiliary operators is supported.
Attributes
Returns aux operators
Returns backend.
The expectation value algorithm used to construct the expectation measurement from the observable.
Returns initial point
Returns operator
The optimal parameters for the variational form.
Returns optimizer
Returns quantum instance.
Return a numpy random.
Prepare the setting of VQE as a string.
Returns variational form
-
property
aux_operators
¶ Returns aux operators
- Return type
Optional
[List
[Optional
[OperatorBase
]]]
-
property
backend
¶ Returns backend.
- Return type
Union
[Backend
,BaseBackend
]
-
cleanup_parameterized_circuits
()¶ set parameterized circuits to None
-
compute_minimum_eigenvalue
(operator=None, aux_operators=None)¶ Computes minimum eigenvalue. Operator and aux_operators can be supplied here and if not None will override any already set into algorithm so it can be reused with different operators. While an operator is required by algorithms, aux_operators are optional. To ‘remove’ a previous aux_operators array use an empty list here.
- Parameters
operator (
Union
[OperatorBase
,LegacyBaseOperator
,None
]) – If not None replaces operator in algorithmaux_operators (
Optional
[List
[Union
[OperatorBase
,LegacyBaseOperator
,None
]]]) – If not None replaces aux_operators in algorithm
- Return type
MinimumEigensolverResult
- Returns
MinimumEigensolverResult
-
construct_circuit
(parameter)¶ Return the circuits used to compute the expectation value.
- Parameters
parameter (
Union
[List
[float
],List
[Parameter
],ndarray
]) – Parameters for the ansatz circuit.- Return type
List
[QuantumCircuit
]- Returns
A list of the circuits used to compute the expectation value.
-
construct_expectation
(parameter)¶ Generate the ansatz circuit and expectation value measurement, and return their runnable composition.
- Parameters
parameter (
Union
[List
[float
],List
[Parameter
],ndarray
]) – Parameters for the ansatz circuit.- Return type
OperatorBase
- Returns
The Operator equalling the measurement of the ansatz
StateFn
by the Observable’s expectationStateFn
.- Raises
AquaError – If no operator has been provided.
-
property
expectation
¶ The expectation value algorithm used to construct the expectation measurement from the observable.
- Return type
ExpectationBase
-
find_minimum
(initial_point=None, var_form=None, cost_fn=None, optimizer=None, gradient_fn=None)¶ Optimize to find the minimum cost value.
- Parameters
initial_point (
Optional
[ndarray
]) – If not None will be used instead of any initial point supplied via constructor. If None and None was supplied to constructor then a random point will be used if the optimizer requires an initial point.var_form (
Union
[QuantumCircuit
,VariationalForm
,None
]) – If not None will be used instead of any variational form supplied via constructor.cost_fn (
Optional
[Callable
]) – If not None will be used instead of any cost_fn supplied via constructor.optimizer (
Optional
[Optimizer
]) – If not None will be used instead of any optimizer supplied via constructor.gradient_fn (
Optional
[Callable
]) – Optional gradient function for optimizer
- Returns
Optimized variational parameters, and corresponding minimum cost value.
- Return type
dict
- Raises
ValueError – invalid input
-
get_optimal_circuit
()¶ Get the circuit with the optimal parameters.
- Return type
QuantumCircuit
-
get_optimal_cost
()¶ Get the minimal cost or energy found by the VQE.
- Return type
float
-
get_optimal_vector
()¶ Get the simulation outcome of the optimal circuit.
- Return type
Union
[List
[float
],Dict
[str
,int
]]
-
get_prob_vector_for_params
(construct_circuit_fn, params_s, quantum_instance, construct_circuit_args=None)¶ Helper function to get probability vectors for a set of params
-
get_probabilities_for_counts
(counts)¶ get probabilities for counts
-
property
initial_point
¶ Returns initial point
- Return type
Optional
[ndarray
]
-
property
operator
¶ Returns operator
- Return type
Optional
[OperatorBase
]
-
property
optimal_params
¶ The optimal parameters for the variational form.
- Return type
List
[float
]
-
property
optimizer
¶ Returns optimizer
- Return type
Optional
[Optimizer
]
-
print_settings
()¶ Preparing the setting of VQE into a string.
- Returns
the formatted setting of VQE
- Return type
str
-
property
quantum_instance
¶ Returns quantum instance.
- Return type
Optional
[QuantumInstance
]
-
property
random
¶ Return a numpy random.
-
run
(quantum_instance=None, **kwargs)¶ Execute the algorithm with selected backend.
- Parameters
quantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – the experimental setting.kwargs (dict) – kwargs
- Returns
results of an algorithm.
- Return type
dict
- Raises
AquaError – If a quantum instance or backend has not been provided
-
set_backend
(backend, **kwargs)¶ Sets backend with configuration.
- Return type
None
-
property
setting
¶ Prepare the setting of VQE as a string.
-
classmethod
supports_aux_operators
()¶ Whether computing the expectation value of auxiliary operators is supported.
If the minimum eigensolver computes an eigenstate of the main operator then it can compute the expectation value of the aux_operators for that state. Otherwise they will be ignored.
- Return type
bool
- Returns
True if aux_operator expectations can be evaluated, False otherwise
-
property
var_form
¶ Returns variational form
- Return type
Union
[QuantumCircuit
,VariationalForm
,None
]