English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.aqua.operators.gradients.NaturalGradient

class NaturalGradient(grad_method='lin_comb', qfi_method='lin_comb_full', regularization=None, **kwargs)[source]

Convert an operator expression to the first-order gradient.

Given an ill-posed inverse problem

x = arg min{||Ax-C||^2} (1)

one can use regularization schemes can be used to stabilize the system and find a numerical solution

x_lambda = arg min{||Ax-C||^2 + lambda*R(x)} (2)

where R(x) represents the penalization term.

Parameters
  • grad_method (Union[str, CircuitGradient]) – The method used to compute the state gradient. Can be either 'param_shift' or 'lin_comb' or 'fin_diff'.

  • qfi_method (Union[str, CircuitQFI]) – The method used to compute the QFI. Can be either 'lin_comb_full' or 'overlap_block_diag' or 'overlap_diag'.

  • regularization (Optional[str]) – Use the following regularization with a least square method to solve the underlying system of linear equations Can be either None or 'ridge' or 'lasso' or 'perturb_diag' 'ridge' and 'lasso' use an automatic optimal parameter search If regularization is None but the metric is ill-conditioned or singular then a least square solver is used without regularization

  • kwargs (dict) – Optional parameters for a CircuitGradient

__init__(grad_method='lin_comb', qfi_method='lin_comb_full', regularization=None, **kwargs)[source]
Parameters
  • grad_method (Union[str, CircuitGradient]) – The method used to compute the state gradient. Can be either 'param_shift' or 'lin_comb' or 'fin_diff'.

  • qfi_method (Union[str, CircuitQFI]) – The method used to compute the QFI. Can be either 'lin_comb_full' or 'overlap_block_diag' or 'overlap_diag'.

  • regularization (Optional[str]) – Use the following regularization with a least square method to solve the underlying system of linear equations Can be either None or 'ridge' or 'lasso' or 'perturb_diag' 'ridge' and 'lasso' use an automatic optimal parameter search If regularization is None but the metric is ill-conditioned or singular then a least square solver is used without regularization

  • kwargs (dict) – Optional parameters for a CircuitGradient

Methods

__init__([grad_method, qfi_method, …])

type grad_method

Union[str, CircuitGradient]

convert(operator[, params])

type operator

OperatorBase

gradient_wrapper(operator, bind_params[, …])

Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values.

parameter_expression_grad(param_expr, param)

Get the derivative of a parameter expression w.r.t.

Attributes

grad_method

Returns CircuitGradient.

qfi_method

Returns CircuitQFI.

regularization

Returns the regularization option.

convert(operator, params=None)[source]
Parameters
  • operator (OperatorBase) – The operator we are taking the gradient of.

  • params (Union[ParameterVector, ParameterExpression, List[ParameterExpression], None]) – The parameters we are taking the gradient with respect to.

Return type

OperatorBase

Returns

An operator whose evaluation yields the NaturalGradient.

Raises
  • TypeError – If operator does not represent an expectation value or the quantum state is not CircuitStateFn.

  • ValueError – If params contains a parameter not present in operator.

property grad_method

Returns CircuitGradient.

Return type

CircuitGradient

Returns

CircuitGradient.

gradient_wrapper(operator, bind_params, grad_params=None, backend=None)

Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. This callable can be used as gradient function for optimizers.

Parameters
  • operator (OperatorBase) – The operator for which we want to get the gradient, Hessian or QFI.

  • bind_params (Union[ParameterExpression, ParameterVector, List[ParameterExpression]]) – The operator parameters to which the parameter values are assigned.

  • grad_params (Union[ParameterExpression, ParameterVector, List[ParameterExpression], Tuple[ParameterExpression, ParameterExpression], List[Tuple[ParameterExpression, ParameterExpression]], None]) – The parameters with respect to which we are taking the gradient, Hessian or QFI. If grad_params = None, then grad_params = bind_params

  • backend (Union[BaseBackend, QuantumInstance, None]) – The quantum backend or QuantumInstance to use to evaluate the gradient, Hessian or QFI.

Returns

Function to compute a gradient, Hessian or QFI. The function takes an iterable as argument which holds the parameter values.

Return type

callable(param_values)

static parameter_expression_grad(param_expr, param)

Get the derivative of a parameter expression w.r.t. the given parameter.

Parameters
  • param_expr (ParameterExpression) – The Parameter Expression for which we compute the derivative

  • param (ParameterExpression) – Parameter w.r.t. which we want to take the derivative

Return type

Union[ParameterExpression, float]

Returns

ParameterExpression representing the gradient of param_expr w.r.t. param

property qfi_method

Returns CircuitQFI.

Returns: CircuitQFI

Return type

CircuitQFI

property regularization

Returns the regularization option.

Returns: the regularization option.

Return type

Optional[str]