English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Source code for qiskit.aqua.operators.gradients.natural_gradient

# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

""" Natural Gradient. """

from collections.abc import Iterable
from typing import List, Tuple, Callable, Optional, Union

import numpy as np
from qiskit.aqua.operators import (OperatorBase, ListOp, ComposedOp, CircuitStateFn)
from qiskit.aqua.operators.gradients.circuit_gradients import CircuitGradient
from qiskit.aqua.operators.gradients.circuit_qfis import CircuitQFI
from qiskit.aqua.operators.gradients.gradient import Gradient
from qiskit.aqua.operators.gradients.gradient_base import GradientBase
from qiskit.aqua.operators.gradients.qfi import QFI
from qiskit.circuit import ParameterVector, ParameterExpression


[docs]class NaturalGradient(GradientBase): r"""Convert an operator expression to the first-order gradient. Given an ill-posed inverse problem x = arg min{||Ax-C||^2} (1) one can use regularization schemes can be used to stabilize the system and find a numerical solution x_lambda = arg min{||Ax-C||^2 + lambda*R(x)} (2) where R(x) represents the penalization term. """
[docs] def __init__(self, grad_method: Union[str, CircuitGradient] = 'lin_comb', qfi_method: Union[str, CircuitQFI] = 'lin_comb_full', regularization: Optional[str] = None, **kwargs): r""" Args: grad_method: The method used to compute the state gradient. Can be either ``'param_shift'`` or ``'lin_comb'`` or ``'fin_diff'``. qfi_method: The method used to compute the QFI. Can be either ``'lin_comb_full'`` or ``'overlap_block_diag'`` or ``'overlap_diag'``. regularization: Use the following regularization with a least square method to solve the underlying system of linear equations Can be either None or ``'ridge'`` or ``'lasso'`` or ``'perturb_diag'`` ``'ridge'`` and ``'lasso'`` use an automatic optimal parameter search If regularization is None but the metric is ill-conditioned or singular then a least square solver is used without regularization kwargs (dict): Optional parameters for a CircuitGradient """ super().__init__(grad_method) self._qfi_method = QFI(qfi_method) self._regularization = regularization self._epsilon = kwargs.get('epsilon', 1e-6)
# pylint: disable=arguments-differ
[docs] def convert(self, operator: OperatorBase, params: Optional[Union[ParameterVector, ParameterExpression, List[ParameterExpression]]] = None ) -> OperatorBase: r""" Args: operator: The operator we are taking the gradient of. params: The parameters we are taking the gradient with respect to. Returns: An operator whose evaluation yields the NaturalGradient. Raises: TypeError: If ``operator`` does not represent an expectation value or the quantum state is not ``CircuitStateFn``. ValueError: If ``params`` contains a parameter not present in ``operator``. """ if not isinstance(operator, ComposedOp) or not isinstance(operator[-1], CircuitStateFn): raise TypeError( 'Please make sure that the operator for which you want to compute Quantum ' 'Fisher Information represents an expectation value and that the quantum ' 'state is given as CircuitStateFn.') if not isinstance(params, Iterable): params = [params] grad = Gradient(self._grad_method, epsilon=self._epsilon).convert(operator, params) metric = self._qfi_method.convert(operator[-1], params) * 0.25 def combo_fn(x): c = np.real(x[0]) a = np.real(x[1]) if self.regularization: nat_grad = NaturalGradient._regularized_sle_solver( a, c, regularization=self.regularization) else: try: nat_grad = np.linalg.solve(a, c) except np.LinAlgError: nat_grad = np.linalg.lstsq(a, c) return np.real(nat_grad) return ListOp([grad, metric], combo_fn=combo_fn)
@property def qfi_method(self) -> CircuitQFI: """Returns ``CircuitQFI``. Returns: ``CircuitQFI`` """ return self._qfi_method.qfi_method @property def regularization(self) -> Optional[str]: """Returns the regularization option. Returns: the regularization option. """ return self._regularization @staticmethod def _reg_term_search(a: np.ndarray, c: np.ndarray, reg_method: Callable[[np.ndarray, np.ndarray, float], float], lambda1: float = 1e-3, lambda4: float = 1., tol: float = 1e-8) -> Tuple[float, np.ndarray]: """ This method implements a search for a regularization parameter lambda by finding for the corner of the L-curve More explicitly, one has to evaluate a suitable lambda by finding a compromise between the error in the solution and the norm of the regularization. This function implements a method presented in `A simple algorithm to find the L-curve corner in the regularization of inverse problems <https://arxiv.org/pdf/1608.04571.pdf>` Args: a: see (1) and (2) c: see (1) and (2) reg_method: Given A, C and lambda the regularization method must return x_lambda - see (2) lambda1: left starting point for L-curve corner search lambda4: right starting point for L-curve corner search tol: termination threshold Returns: regularization coefficient, solution to the regularization inverse problem """ def _get_curvature(x_lambda: List) -> Union[int, float]: """Calculate Menger curvature Menger, K. (1930). Untersuchungen ̈uber Allgemeine Metrik. Math. Ann.,103(1), 466–501 Args: x_lambda: [[x_lambdaj], [x_lambdak], [x_lambdal]] lambdaj < lambdak < lambdal Returns: Menger Curvature """ eps = [] eta = [] for x in x_lambda: try: eps.append(np.log(np.linalg.norm(np.matmul(a, x) - c) ** 2)) except ValueError: eps.append(np.log(np.linalg.norm(np.matmul(a, np.transpose(x)) - c) ** 2)) eta.append(np.log(max(np.linalg.norm(x) ** 2, 1e-6))) p_temp = 1 c_k = 0 for i in range(3): p_temp *= (eps[np.mod(i + 1, 3)] - eps[i]) ** 2 + (eta[np.mod(i + 1, 3)] - eta[i]) \ ** 2 c_k += eps[i] * eta[np.mod(i + 1, 3)] - eps[np.mod(i + 1, 3)] * eta[i] c_k = 2 * c_k / max(1e-4, np.sqrt(p_temp)) return c_k def get_lambda2_lambda3(lambda1, lambda4): gold_sec = (1 + np.sqrt(5)) / 2. lambda2 = 10 ** ((np.log10(lambda4) + np.log10(lambda1) * gold_sec) / (1 + gold_sec)) lambda3 = 10 ** (np.log10(lambda1) + np.log10(lambda4) - np.log10(lambda2)) return lambda2, lambda3 lambda2, lambda3 = get_lambda2_lambda3(lambda1, lambda4) lambda_ = [lambda1, lambda2, lambda3, lambda4] x_lambda = [] for lam in lambda_: x_lambda.append(reg_method(a, c, lam)) counter = 0 while (lambda_[3] - lambda_[0]) / lambda_[3] >= tol: counter += 1 c_2 = _get_curvature(x_lambda[:-1]) c_3 = _get_curvature(x_lambda[1:]) while c_3 < 0: lambda_[3] = lambda_[2] x_lambda[3] = x_lambda[2] lambda_[2] = lambda_[1] x_lambda[2] = x_lambda[1] lambda2, _ = get_lambda2_lambda3(lambda_[0], lambda_[3]) lambda_[1] = lambda2 x_lambda[1] = reg_method(a, c, lambda_[1]) c_3 = _get_curvature(x_lambda[1:]) if c_2 > c_3: lambda_mc = lambda_[1] x_mc = x_lambda[1] lambda_[3] = lambda_[2] x_lambda[3] = x_lambda[2] lambda_[2] = lambda_[1] x_lambda[2] = x_lambda[1] lambda2, _ = get_lambda2_lambda3(lambda_[0], lambda_[3]) lambda_[1] = lambda2 x_lambda[1] = reg_method(a, c, lambda_[1]) else: lambda_mc = lambda_[2] x_mc = x_lambda[2] lambda_[0] = lambda_[1] x_lambda[0] = x_lambda[1] lambda_[1] = lambda_[2] x_lambda[1] = x_lambda[2] _, lambda3 = get_lambda2_lambda3(lambda_[0], lambda_[3]) lambda_[2] = lambda3 x_lambda[2] = reg_method(a, c, lambda_[2]) return lambda_mc, x_mc @staticmethod def _ridge(a: np.ndarray, c: np.ndarray, lambda_: float = 1., lambda1: float = 1e-4, lambda4: float = 1e-1, tol_search: float = 1e-8, fit_intercept: bool = True, normalize: bool = False, copy_a: bool = True, max_iter: int = 1000, tol: float = 0.0001, solver: str = 'auto', random_state: Optional[int] = None) -> Tuple[float, np.ndarray]: """ Ridge Regression with automatic search for a good regularization term lambda x_lambda = arg min{||Ax-C||^2 + lambda*||x||_2^2} (3) `Scikit Learn Ridge Regression <https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html>` Args: a: see (1) and (2) c: see (1) and (2) lambda_ : regularization parameter used if auto_search = False lambda1: left starting point for L-curve corner search lambda4: right starting point for L-curve corner search tol_search: termination threshold for regularization parameter search fit_intercept: if True calculate intercept normalize: deprecated if fit_intercept=False, if True normalize A for regression copy_a: if True A is copied, else overwritten max_iter: max. number of iterations if solver is CG tol: precision of the regression solution solver: solver {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’} random_state: seed for the pseudo random number generator used when data is shuffled Returns: regularization coefficient, solution to the regularization inverse problem """ from sklearn.linear_model import Ridge reg = Ridge(alpha=lambda_, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_a, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state) def reg_method(a, c, alpha): reg.set_params(alpha=alpha) reg.fit(a, c) return reg.coef_ lambda_mc, x_mc = NaturalGradient._reg_term_search(a, c, reg_method, lambda1=lambda1, lambda4=lambda4, tol=tol_search) return lambda_mc, np.transpose(x_mc) @staticmethod def _lasso(a: np.ndarray, c: np.ndarray, lambda_: float = 1., lambda1: float = 1e-4, lambda4: float = 1e-1, tol_search: float = 1e-8, fit_intercept: bool = True, normalize: bool = False, precompute: Union[bool, Iterable] = False, copy_a: bool = True, max_iter: int = 1000, tol: float = 0.0001, warm_start: bool = False, positive: bool = False, random_state: Optional[int] = None, selection: str = 'random') -> Tuple[float, np.ndarray]: """ Lasso Regression with automatic search for a good regularization term lambda x_lambda = arg min{||Ax-C||^2/(2*n_samples) + lambda*||x||_1} (4) `Scikit Learn Lasso Regression <https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html>` Args: a: mxn matrix c: m vector lambda_ : regularization parameter used if auto_search = False lambda1: left starting point for L-curve corner search lambda4: right starting point for L-curve corner search tol_search: termination threshold for regularization parameter search fit_intercept: if True calculate intercept normalize: deprecated if fit_intercept=False, if True normalize A for regression precompute: If True compute and use Gram matrix to speed up calculations. Gram matrix can also be given explicitly copy_a: if True A is copied, else overwritten max_iter: max. number of iterations if solver is CG tol: precision of the regression solution warm_start: if True reuse solution from previous fit as initialization positive: if True force positive coefficients random_state: seed for the pseudo random number generator used when data is shuffled selection: {'cyclic', 'random'} Returns: regularization coefficient, solution to the regularization inverse problem """ from sklearn.linear_model import Lasso reg = Lasso(alpha=lambda_, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_a, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection) def reg_method(a, c, alpha): reg.set_params(alpha=alpha) reg.fit(a, c) return reg.coef_ lambda_mc, x_mc = NaturalGradient._reg_term_search(a, c, reg_method, lambda1=lambda1, lambda4=lambda4, tol=tol_search) return lambda_mc, x_mc @staticmethod def _regularized_sle_solver(a: np.ndarray, c: np.ndarray, regularization: str = 'perturb_diag', lambda1: float = 1e-3, lambda4: float = 1., alpha: float = 0., tol_norm_x: Tuple[float, float] = (1e-8, 5.), tol_cond_a: float = 1000.) -> np.ndarray: """ Solve a linear system of equations with a regularization method and automatic lambda fitting Args: a: mxn matrix c: m vector regularization: Regularization scheme to be used: 'ridge', 'lasso', 'perturb_diag_elements' or 'perturb_diag' lambda1: left starting point for L-curve corner search (for 'ridge' and 'lasso') lambda4: right starting point for L-curve corner search (for 'ridge' and 'lasso') alpha: perturbation coefficient for 'perturb_diag_elements' and 'perturb_diag' tol_norm_x: tolerance for the norm of x tol_cond_a: tolerance for the condition number of A Returns: solution to the regularized system of linear equations """ if regularization == 'ridge': _, x = NaturalGradient._ridge(a, c, lambda1=lambda1) elif regularization == 'lasso': _, x = NaturalGradient._lasso(a, c, lambda1=lambda1) elif regularization == 'perturb_diag_elements': alpha = 1e-7 while np.linalg.cond(a + alpha * np.diag(a)) > tol_cond_a: alpha *= 10 # include perturbation in A to avoid singularity x, _, _, _ = np.linalg.lstsq(a + alpha * np.diag(a), c, rcond=None) elif regularization == 'perturb_diag': alpha = 1e-7 while np.linalg.cond(a + alpha * np.eye(len(c))) > tol_cond_a: alpha *= 10 # include perturbation in A to avoid singularity x, _, _, _ = np.linalg.lstsq(a + alpha * np.eye(len(c)), c, rcond=None) else: # include perturbation in A to avoid singularity x, _, _, _ = np.linalg.lstsq(a, c, rcond=None) if np.linalg.norm(x) > tol_norm_x[1] or np.linalg.norm(x) < tol_norm_x[0]: if regularization == 'ridge': lambda1 = lambda1 / 10. _, x = NaturalGradient._ridge(a, c, lambda1=lambda1, lambda4=lambda4) elif regularization == 'lasso': lambda1 = lambda1 / 10. _, x = NaturalGradient._lasso(a, c, lambda1=lambda1) elif regularization == 'perturb_diag_elements': while np.linalg.cond(a + alpha * np.diag(a)) > tol_cond_a: if alpha == 0: alpha = 1e-7 else: alpha *= 10 # include perturbation in A to avoid singularity x, _, _, _ = np.linalg.lstsq(a + alpha * np.diag(a), c, rcond=None) else: if alpha == 0: alpha = 1e-7 else: alpha *= 10 while np.linalg.cond(a + alpha * np.eye(len(c))) > tol_cond_a: # include perturbation in A to avoid singularity x, _, _, _ = np.linalg.lstsq(a + alpha * np.eye(len(c)), c, rcond=None) alpha *= 10 return x

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.