English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.aqua.components.optimizers.ADAM

class ADAM(maxiter=10000, tol=1e-06, lr=0.001, beta_1=0.9, beta_2=0.99, noise_factor=1e-08, eps=1e-10, amsgrad=False, snapshot_dir=None)[source]

Adam and AMSGRAD optimizers.

Adam [1] is a gradient-based optimization algorithm that is relies on adaptive estimates of lower-order moments. The algorithm requires little memory and is invariant to diagonal rescaling of the gradients. Furthermore, it is able to cope with non-stationary objective functions and noisy and/or sparse gradients.

AMSGRAD [2] (a variant of Adam) uses a ‘long-term memory’ of past gradients and, thereby, improves convergence properties.

References

[1]: Kingma, Diederik & Ba, Jimmy (2014), Adam: A Method for Stochastic Optimization.

arXiv:1412.6980

[2]: Sashank J. Reddi and Satyen Kale and Sanjiv Kumar (2018),

On the Convergence of Adam and Beyond. arXiv:1904.09237

Parameters
  • maxiter (int) – Maximum number of iterations

  • tol (float) – Tolerance for termination

  • lr (float) – Value >= 0, Learning rate.

  • beta_1 (float) – Value in range 0 to 1, Generally close to 1.

  • beta_2 (float) – Value in range 0 to 1, Generally close to 1.

  • noise_factor (float) – Value >= 0, Noise factor

  • eps (float) – Value >=0, Epsilon to be used for finite differences if no analytic gradient method is given.

  • amsgrad (bool) – True to use AMSGRAD, False if not

  • snapshot_dir (Optional[str]) – If not None save the optimizer’s parameter after every step to the given directory

__init__(maxiter=10000, tol=1e-06, lr=0.001, beta_1=0.9, beta_2=0.99, noise_factor=1e-08, eps=1e-10, amsgrad=False, snapshot_dir=None)[source]
Parameters
  • maxiter (int) – Maximum number of iterations

  • tol (float) – Tolerance for termination

  • lr (float) – Value >= 0, Learning rate.

  • beta_1 (float) – Value in range 0 to 1, Generally close to 1.

  • beta_2 (float) – Value in range 0 to 1, Generally close to 1.

  • noise_factor (float) – Value >= 0, Noise factor

  • eps (float) – Value >=0, Epsilon to be used for finite differences if no analytic gradient method is given.

  • amsgrad (bool) – True to use AMSGRAD, False if not

  • snapshot_dir (Optional[str]) – If not None save the optimizer’s parameter after every step to the given directory

Methods

__init__([maxiter, tol, lr, beta_1, beta_2, …])

type maxiter

int

get_support_level()

Return support level dictionary

gradient_num_diff(x_center, f, epsilon[, …])

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

load_params(load_dir)

Load iteration parameters for a file called adam_params.csv.

minimize(objective_function, initial_point, …)

Run the minimization.

optimize(num_vars, objective_function[, …])

Perform optimization.

print_options()

Print algorithm-specific options.

save_params(snapshot_dir)

Save the current iteration parameters to a file called adam_params.csv.

set_max_evals_grouped(limit)

Set max evals grouped

set_options(**kwargs)

Sets or updates values in the options dictionary.

wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

property bounds_support_level

Returns bounds support level

get_support_level()[source]

Return support level dictionary

static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters
  • x_center (ndarray) – point around which we compute the gradient

  • f (func) – the function of which the gradient is to be computed.

  • epsilon (float) – the epsilon used in the numeric differentiation.

  • max_evals_grouped (int) – max evals grouped

Returns

the gradient computed

Return type

grad

property gradient_support_level

Returns gradient support level

property initial_point_support_level

Returns initial point support level

property is_bounds_ignored

Returns is bounds ignored

property is_bounds_required

Returns is bounds required

property is_bounds_supported

Returns is bounds supported

property is_gradient_ignored

Returns is gradient ignored

property is_gradient_required

Returns is gradient required

property is_gradient_supported

Returns is gradient supported

property is_initial_point_ignored

Returns is initial point ignored

property is_initial_point_required

Returns is initial point required

property is_initial_point_supported

Returns is initial point supported

load_params(load_dir)[source]

Load iteration parameters for a file called adam_params.csv.

Parameters

load_dir (str) – The directory containing adam_params.csv.

Return type

None

minimize(objective_function, initial_point, gradient_function)[source]

Run the minimization.

Parameters
  • objective_function (Callable[[ndarray], float]) – A function handle to the objective function.

  • initial_point (ndarray) – The initial iteration point.

  • gradient_function (Callable[[ndarray], float]) – A function handle to the gradient of the objective function.

Return type

Tuple[ndarray, float, int]

Returns

A tuple of (optimal parameters, optimal value, number of iterations).

optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)[source]

Perform optimization.

Parameters
  • num_vars (int) – Number of parameters to be optimized.

  • objective_function (Callable[[ndarray], float]) – Handle to a function that computes the objective function.

  • gradient_function (Optional[Callable[[ndarray], float]]) – Handle to a function that computes the gradient of the objective function.

  • variable_bounds (Optional[List[Tuple[float, float]]]) – deprecated

  • initial_point (Optional[ndarray]) – The initial point for the optimization.

Return type

Tuple[ndarray, float, int]

Returns

A tuple (point, value, nfev) where

point: is a 1D numpy.ndarray[float] containing the solution

value: is a float with the objective function value

nfev: is the number of objective function calls

print_options()

Print algorithm-specific options.

save_params(snapshot_dir)[source]

Save the current iteration parameters to a file called adam_params.csv.

Note

The current parameters are appended to the file, if it exists already. The file is not overwritten.

Parameters

snapshot_dir (str) – The directory to store the file in.

Return type

None

set_max_evals_grouped(limit)

Set max evals grouped

set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict) – options, given as name=value.

property setting

Return setting

static wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters
  • function (func) – the target function

  • args (tuple) – the args to be injected

Returns

wrapper

Return type

function_wrapper