English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Source code for qiskit.aqua.components.optimizers.adam_amsgrad


# This code is part of Qiskit.
#
# (C) Copyright IBM 2019, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""The Adam and AMSGRAD optimizers."""

from typing import Optional, Callable, Tuple, List
import logging
import os

import csv
import numpy as np
from qiskit.aqua import aqua_globals
from .optimizer import Optimizer, OptimizerSupportLevel

logger = logging.getLogger(__name__)

# pylint: disable=invalid-name


[docs]class ADAM(Optimizer): """Adam and AMSGRAD optimizers. Adam [1] is a gradient-based optimization algorithm that is relies on adaptive estimates of lower-order moments. The algorithm requires little memory and is invariant to diagonal rescaling of the gradients. Furthermore, it is able to cope with non-stationary objective functions and noisy and/or sparse gradients. AMSGRAD [2] (a variant of Adam) uses a 'long-term memory' of past gradients and, thereby, improves convergence properties. References: [1]: Kingma, Diederik & Ba, Jimmy (2014), Adam: A Method for Stochastic Optimization. `arXiv:1412.6980 <https://arxiv.org/abs/1412.6980>`_ [2]: Sashank J. Reddi and Satyen Kale and Sanjiv Kumar (2018), On the Convergence of Adam and Beyond. `arXiv:1904.09237 <https://arxiv.org/abs/1904.09237>`_ """ _OPTIONS = ['maxiter', 'tol', 'lr', 'beta_1', 'beta_2', 'noise_factor', 'eps', 'amsgrad', 'snapshot_dir']
[docs] def __init__(self, maxiter: int = 10000, tol: float = 1e-6, lr: float = 1e-3, beta_1: float = 0.9, beta_2: float = 0.99, noise_factor: float = 1e-8, eps: float = 1e-10, amsgrad: bool = False, snapshot_dir: Optional[str] = None) -> None: """ Args: maxiter: Maximum number of iterations tol: Tolerance for termination lr: Value >= 0, Learning rate. beta_1: Value in range 0 to 1, Generally close to 1. beta_2: Value in range 0 to 1, Generally close to 1. noise_factor: Value >= 0, Noise factor eps : Value >=0, Epsilon to be used for finite differences if no analytic gradient method is given. amsgrad: True to use AMSGRAD, False if not snapshot_dir: If not None save the optimizer's parameter after every step to the given directory """ super().__init__() for k, v in list(locals().items()): if k in self._OPTIONS: self._options[k] = v self._maxiter = maxiter self._snapshot_dir = snapshot_dir self._tol = tol self._lr = lr self._beta_1 = beta_1 self._beta_2 = beta_2 self._noise_factor = noise_factor self._eps = eps self._amsgrad = amsgrad # runtime variables self._t = 0 # time steps self._m = np.zeros(1) self._v = np.zeros(1) if self._amsgrad: self._v_eff = np.zeros(1) if self._snapshot_dir: with open(os.path.join(self._snapshot_dir, 'adam_params.csv'), mode='w') as csv_file: if self._amsgrad: fieldnames = ['v', 'v_eff', 'm', 't'] else: fieldnames = ['v', 'm', 't'] writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writeheader()
[docs] def get_support_level(self): """ Return support level dictionary """ return { 'gradient': OptimizerSupportLevel.supported, 'bounds': OptimizerSupportLevel.ignored, 'initial_point': OptimizerSupportLevel.supported }
[docs] def save_params(self, snapshot_dir: str) -> None: """Save the current iteration parameters to a file called ``adam_params.csv``. Note: The current parameters are appended to the file, if it exists already. The file is not overwritten. Args: snapshot_dir: The directory to store the file in. """ if self._amsgrad: with open(os.path.join(snapshot_dir, 'adam_params.csv'), mode='a') as csv_file: fieldnames = ['v', 'v_eff', 'm', 't'] writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writerow({'v': self._v, 'v_eff': self._v_eff, 'm': self._m, 't': self._t}) else: with open(os.path.join(snapshot_dir, 'adam_params.csv'), mode='a') as csv_file: fieldnames = ['v', 'm', 't'] writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writerow({'v': self._v, 'm': self._m, 't': self._t})
[docs] def load_params(self, load_dir: str) -> None: """Load iteration parameters for a file called ``adam_params.csv``. Args: load_dir: The directory containing ``adam_params.csv``. """ with open(os.path.join(load_dir, 'adam_params.csv'), mode='r') as csv_file: if self._amsgrad: fieldnames = ['v', 'v_eff', 'm', 't'] else: fieldnames = ['v', 'm', 't'] reader = csv.DictReader(csv_file, fieldnames=fieldnames) for line in reader: v = line['v'] if self._amsgrad: v_eff = line['v_eff'] m = line['m'] t = line['t'] v = v[1:-1] self._v = np.fromstring(v, dtype=float, sep=' ') if self._amsgrad: v_eff = v_eff[1:-1] self._v_eff = np.fromstring(v_eff, dtype=float, sep=' ') m = m[1:-1] self._m = np.fromstring(m, dtype=float, sep=' ') t = t[1:-1] self._t = np.fromstring(t, dtype=int, sep=' ')
[docs] def minimize(self, objective_function: Callable[[np.ndarray], float], initial_point: np.ndarray, gradient_function: Callable[[np.ndarray], float]) -> Tuple[np.ndarray, float, int]: """Run the minimization. Args: objective_function: A function handle to the objective function. initial_point: The initial iteration point. gradient_function: A function handle to the gradient of the objective function. Returns: A tuple of (optimal parameters, optimal value, number of iterations). """ derivative = gradient_function(initial_point) self._t = 0 self._m = np.zeros(np.shape(derivative)) self._v = np.zeros(np.shape(derivative)) if self._amsgrad: self._v_eff = np.zeros(np.shape(derivative)) params = params_new = initial_point while self._t < self._maxiter: if self._t > 0: derivative = gradient_function(params) self._t += 1 self._m = self._beta_1 * self._m + (1 - self._beta_1) * derivative self._v = self._beta_2 * self._v + (1 - self._beta_2) * derivative * derivative lr_eff = self._lr * np.sqrt(1 - self._beta_2 ** self._t) / (1 - self._beta_1 ** self._t) if not self._amsgrad: params_new = (params - lr_eff * self._m.flatten() / (np.sqrt(self._v.flatten()) + self._noise_factor)) else: self._v_eff = np.maximum(self._v_eff, self._v) params_new = (params - lr_eff * self._m.flatten() / (np.sqrt(self._v_eff.flatten()) + self._noise_factor)) if self._snapshot_dir: self.save_params(self._snapshot_dir) if np.linalg.norm(params - params_new) < self._tol: return params_new, objective_function(params_new), self._t else: params = params_new return params_new, objective_function(params_new), self._t
[docs] def optimize(self, num_vars: int, objective_function: Callable[[np.ndarray], float], gradient_function: Optional[Callable[[np.ndarray], float]] = None, variable_bounds: Optional[List[Tuple[float, float]]] = None, initial_point: Optional[np.ndarray] = None ) -> Tuple[np.ndarray, float, int]: """Perform optimization. Args: num_vars: Number of parameters to be optimized. objective_function: Handle to a function that computes the objective function. gradient_function: Handle to a function that computes the gradient of the objective function. variable_bounds: deprecated initial_point: The initial point for the optimization. Returns: A tuple (point, value, nfev) where\n point: is a 1D numpy.ndarray[float] containing the solution\n value: is a float with the objective function value\n nfev: is the number of objective function calls """ super().optimize(num_vars, objective_function, gradient_function, variable_bounds, initial_point) if initial_point is None: initial_point = aqua_globals.random.random(num_vars) if gradient_function is None: gradient_function = Optimizer.wrap_function(Optimizer.gradient_num_diff, (objective_function, self._eps)) point, value, nfev = self.minimize(objective_function, initial_point, gradient_function) return point, value, nfev

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.