Portuguese, Brazilian
Idiomas
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.quantum_info.OneQubitEulerDecomposer

class OneQubitEulerDecomposer(basis='U3')[código fonte]

A class for decomposing 1-qubit unitaries into Euler angle rotations.

The resulting decomposition is parameterized by 3 Euler rotation angle parameters \((\theta, \phi, \lambda)\), and a phase parameter \(\gamma\). The value of the parameters for an input unitary depends on the decomposition basis. Allowed bases and the resulting circuits are shown in the following table. Note that for the non-Euler bases (U3, U1X, RR), the ZYZ euler parameters are used.

Table 17 Supported circuit bases

Basis

Euler Angle Basis

Decomposition Circuit

‘ZYZ’

\(Z(\phi) Y(\theta) Z(\lambda)\)

\(e^{i\gamma} R_Z(\phi).R_Y(\theta).R_Z(\lambda)\)

‘ZXZ’

\(Z(\phi) X(\theta) Z(\lambda)\)

\(e^{i\gamma} R_Z(\phi).R_X(\theta).R_Z(\lambda)\)

‘XYX’

\(X(\phi) Y(\theta) X(\lambda)\)

\(e^{i\gamma} R_X(\phi).R_Y(\theta).R_X(\lambda)\)

‘U3’

\(Z(\phi) Y(\theta) Z(\lambda)\)

\(e^{i\gamma} U_3(\theta,\phi,\lambda)\)

‘U’

\(Z(\phi) Y(\theta) Z(\lambda)\)

\(e^{i\gamma} U_3(\theta,\phi,\lambda)\)

‘PSX’

\(Z(\phi) Y(\theta) Z(\lambda)\)

\(e^{i\gamma} U_1(\phi+\pi).R_X\left(\frac{\pi}{2}\right).\) \(U_1(\theta+\pi).R_X\left(\frac{\pi}{2}\right).U_1(\lambda)\)

‘ZSX’

\(Z(\phi) Y(\theta) Z(\lambda)\)

\(e^{i\gamma} U_1(\phi+\pi).R_X\left(\frac{\pi}{2}\right).\) \(R_Z(\theta+\pi).S_X\left(\frac{\pi}{2}\right).U_1(\lambda)\)

‘U1X’

\(Z(\phi) Y(\theta) Z(\lambda)\)

\(e^{i\gamma} U_1(\phi+\pi).R_X\left(\frac{\pi}{2}\right).\) \(U_1(\theta+\pi).R_X\left(\frac{\pi}{2}\right).U_1(\lambda)\)

‘RR’

\(Z(\phi) Y(\theta) Z(\lambda)\)

\(e^{i\gamma} R\left(-\pi,\frac{\phi-\lambda+\pi}{2}\right).\) \(R\left(\theta+\pi,\frac{\pi}{2}-\lambda\right)\)

Initialize decomposer

Supported bases are: ‘U’, ‘PSX’, ‘ZSX’, ‘U3’, ‘U1X’, ‘RR’, ‘ZYZ’, ‘ZXZ’, ‘XYX’.

Parâmetros

basis (str) – the decomposition basis [Default: ‘U3’]

Levanta

QiskitError – If input basis is not recognized.

__init__(basis='U3')[código fonte]

Initialize decomposer

Supported bases are: ‘U’, ‘PSX’, ‘ZSX’, ‘U3’, ‘U1X’, ‘RR’, ‘ZYZ’, ‘ZXZ’, ‘XYX’.

Parâmetros

basis (str) – the decomposition basis [Default: ‘U3’]

Levanta

QiskitError – If input basis is not recognized.

Methods

__init__([basis])

Initialize decomposer

angles(unitary)

Return the Euler angles for input array.

angles_and_phase(unitary)

Return the Euler angles and phase for input array.

Attributes

basis

The decomposition basis.

angles(unitary)[código fonte]

Return the Euler angles for input array.

Parâmetros

unitary (np.ndarray) – 2x2 unitary matrix.

Retorna

(theta, phi, lambda).

Tipo de retorno

tuple

angles_and_phase(unitary)[código fonte]

Return the Euler angles and phase for input array.

Parâmetros

unitary (np.ndarray) – 2x2 unitary matrix.

Retorna

(theta, phi, lambda, phase).

Tipo de retorno

tuple

property basis

The decomposition basis.