Portuguese, Brazilian
Idiomas
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.aqua.components.optimizers.IMFIL

class IMFIL(maxiter=1000)[código fonte]

IMplicit FILtering algorithm.

Implicit filtering is a way to solve bound-constrained optimization problems for which derivatives are not available. In comparison to methods that use interpolation to reconstruct the function and its higher derivatives, implicit filtering builds upon coordinate search followed by interpolation to get an approximate gradient.

Uses skquant.opt installed with pip install scikit-quant. For further detail, please refer to https://github.com/scikit-quant/scikit-quant and https://qat4chem.lbl.gov/software.

Parâmetros

maxiter (int) – Maximum number of function evaluations.

Levanta

MissingOptionalLibraryError – scikit-quant not installed

__init__(maxiter=1000)[código fonte]
Parâmetros

maxiter (int) – Maximum number of function evaluations.

Levanta

MissingOptionalLibraryError – scikit-quant not installed

Methods

__init__([maxiter])

type maxiter

int

get_support_level()

Returns support level dictionary.

gradient_num_diff(x_center, f, epsilon[, …])

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

optimize(num_vars, objective_function[, …])

Runs the optimization.

print_options()

Print algorithm-specific options.

set_max_evals_grouped(limit)

Set max evals grouped

set_options(**kwargs)

Sets or updates values in the options dictionary.

wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

property bounds_support_level

Returns bounds support level

get_support_level()[código fonte]

Returns support level dictionary.

static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parâmetros
  • x_center (ndarray) – point around which we compute the gradient

  • f (func) – the function of which the gradient is to be computed.

  • epsilon (float) – the epsilon used in the numeric differentiation.

  • max_evals_grouped (int) – max evals grouped

Retorna

the gradient computed

Tipo de retorno

grad

property gradient_support_level

Returns gradient support level

property initial_point_support_level

Returns initial point support level

property is_bounds_ignored

Returns is bounds ignored

property is_bounds_required

Returns is bounds required

property is_bounds_supported

Returns is bounds supported

property is_gradient_ignored

Returns is gradient ignored

property is_gradient_required

Returns is gradient required

property is_gradient_supported

Returns is gradient supported

property is_initial_point_ignored

Returns is initial point ignored

property is_initial_point_required

Returns is initial point required

property is_initial_point_supported

Returns is initial point supported

optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)[código fonte]

Runs the optimization.

print_options()

Print algorithm-specific options.

set_max_evals_grouped(limit)

Set max evals grouped

set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parâmetros

kwargs (dict) – options, given as name=value.

property setting

Return setting

static wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parâmetros
  • function (func) – the target function

  • args (tuple) – the args to be injected

Retorna

wrapper

Tipo de retorno

function_wrapper