Portuguese, Brazilian
Idiomas
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Código fonte para qiskit.circuit.library.standard_gates.t

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""T and Tdg gate."""

import numpy
from qiskit.qasm import pi
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister


[documentos]class TGate(Gate): r"""Single qubit T gate (Z**0.25). It induces a :math:`\pi/4` phase, and is sometimes called the pi/8 gate (because of how the RZ(\pi/4) matrix looks like). This is a non-Clifford gate and a fourth-root of Pauli-Z. **Matrix Representation:** .. math:: T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix} **Circuit symbol:** .. parsed-literal:: ┌───┐ q_0: ┤ T ├ └───┘ Equivalent to a :math:`\pi/4` radian rotation about the Z axis. """
[documentos] def __init__(self, label=None): """Create new T gate.""" super().__init__('t', 1, [], label=label)
def _define(self): """ gate t a { u1(pi/4) a; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .u1 import U1Gate q = QuantumRegister(1, 'q') qc = QuantumCircuit(q, name=self.name) rules = [ (U1Gate(pi / 4), [q[0]], []) ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[documentos] def inverse(self): """Return inverse T gate (i.e. Tdg).""" return TdgGate()
[documentos] def to_matrix(self): """Return a numpy.array for the T gate.""" return numpy.array([[1, 0], [0, (1 + 1j) / numpy.sqrt(2)]], dtype=complex)
[documentos]class TdgGate(Gate): r"""Single qubit T-adjoint gate (~Z**0.25). It induces a :math:`-\pi/4` phase. This is a non-Clifford gate and a fourth-root of Pauli-Z. **Matrix Representation:** .. math:: Tdg = \begin{pmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{pmatrix} **Circuit symbol:** .. parsed-literal:: ┌─────┐ q_0: ┤ Tdg ├ └─────┘ Equivalent to a :math:`\pi/2` radian rotation about the Z axis. """
[documentos] def __init__(self, label=None): """Create new Tdg gate.""" super().__init__('tdg', 1, [], label=label)
def _define(self): """ gate tdg a { u1(pi/4) a; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .u1 import U1Gate q = QuantumRegister(1, 'q') qc = QuantumCircuit(q, name=self.name) rules = [ (U1Gate(-pi / 4), [q[0]], []) ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[documentos] def inverse(self): """Return inverse Tdg gate (i.e. T).""" return TGate()
[documentos] def to_matrix(self): """Return a numpy.array for the inverse T gate.""" return numpy.array([[1, 0], [0, (1 - 1j) / numpy.sqrt(2)]], dtype=complex)

© Copyright 2020, Qiskit Development Team. Última atualização em 2021/06/04.

Built with Sphinx using a theme provided by Read the Docs.