注釈
This page was generated from tutorials/noise/8_tomography.ipynb.
Run interactively in the IBM Quantum lab.
量子トモグラフィー¶
はじめに¶
量子トモグラフィー ( Quantum tomography ) は、量子系の一部の記述を、特定の実験の測定結果から再構築する実験的な手法である。 Qiskit では、以下の種類のトモグラフィーを実装しています。
量子状態トモグラフィー: 状態にシステムを準備する状態準備回路が与えられています。 システムで得られた実際の状態の密度行列 \(\rho\) を再構築します。
Quantum process tomography: Given a circuit, reconstruct a description of the quantum channel \(\mathcal{E}\) that describes the circuit’s operator when running on the system.
Quantum gate set tomography: Performs process tomography on a set of gates in a self-consistent manner, meaning quantum noises on gates used by the tomography process itself is also taken into account.
このノートブックでは、ignis.verification.tomography
モジュールの使用方法を説明します。
[1]:
# Needed for functions
import numpy as np
import time
from copy import deepcopy
# Import Qiskit classes
import qiskit
import qiskit.quantum_info as qi
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister, Aer
from qiskit.providers.aer import noise
from qiskit.compiler import assemble
# Tomography functions
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.ignis.verification.tomography import process_tomography_circuits, ProcessTomographyFitter
from qiskit.ignis.verification.tomography import gateset_tomography_circuits, GatesetTomographyFitter
import qiskit.ignis.mitigation.measurement as mc
# Auxiliary methods
from qiskit.quantum_info import Choi, Kraus
from qiskit.extensions import HGate, XGate
最初の例¶
2量子ビットの状態トモグラフィーの例¶
以下の例では、量子ビット3と5の間の2Qベルの状態トモグラフィーを行います。 参照回路を作るために、qubit 0 と 1 の間に statevector_simulator
を使用して期待される状態ベクトルを生成します。
[2]:
# Create the expected statevector
q2 = QuantumRegister(2)
bell = QuantumCircuit(q2)
bell.h(q2[0])
bell.cx(q2[0], q2[1])
print(bell)
target_state_bell = qi.Statevector.from_instruction(bell)
print(target_state_bell)
┌───┐
q0_0: ┤ H ├──■──
└───┘┌─┴─┐
q0_1: ─────┤ X ├
└───┘
Statevector([0.70710678+0.j, 0. +0.j, 0. +0.j,
0.70710678+0.j],
dims=(2, 2))
[3]:
# Create the actual circuit
q2 = QuantumRegister(6)
bell = QuantumCircuit(q2)
bell.h(q2[3])
bell.cx(q2[3], q2[5])
print(bell)
q1_0: ──────────
q1_1: ──────────
q1_2: ──────────
┌───┐
q1_3: ┤ H ├──■──
└───┘ │
q1_4: ───────┼──
┌─┴─┐
q1_5: ─────┤ X ├
└───┘
ここでは状態トモグラフィー回路を生成して実行します。測定したい2つのレジスタを渡すだけで、状態トモグラフィは \(2^2\) ヒルベルト空間の縮小版でしか実行されません。しかし、レジスタ全体を渡すと、状態トモグラフィモジュールは \(2^6\) 空間にフィットするように動作します。
[4]:
# Generate circuits and run on simulator
t = time.time()
# Generate the state tomography circuits.
qst_bell = state_tomography_circuits(bell, [q2[3], q2[5]])
# Execute
job = qiskit.execute(qst_bell, Aer.get_backend('qasm_simulator'), shots=5000)
print('Time taken:', time.time() - t)
# Fit result
tomo_fitter_bell = StateTomographyFitter(job.result(), qst_bell)
Time taken: 0.3742101192474365
フィッターは state_tomography_circuits
にレジスタに渡した方法に従って順序付けされた密度行列を出力します。
[5]:
# Perform the tomography fit
# which outputs a density matrix
rho_fit_bell = tomo_fitter_bell.fit(method='lstsq')
F_bell = qi.state_fidelity(rho_fit_bell, target_state_bell)
print('State Fidelity: F = {:.5f}'.format(F_bell))
State Fidelity: F = 0.99796
測定ノイズで上記の例を繰り返します¶
[6]:
#Add measurement noise
noise_model = noise.NoiseModel()
for qubit in range(6):
read_err = noise.errors.readout_error.ReadoutError([[0.75, 0.25],[0.1,0.9]])
noise_model.add_readout_error(read_err,[qubit])
#generate the calibration circuits
meas_calibs, state_labels = mc.complete_meas_cal(qubit_list=[3,5])
backend = Aer.get_backend('qasm_simulator')
job_cal = qiskit.execute(meas_calibs, backend=backend, shots=15000, noise_model=noise_model)
job_tomo = qiskit.execute(qst_bell, backend=backend, shots=15000, noise_model=noise_model)
meas_fitter = mc.CompleteMeasFitter(job_cal.result(),state_labels)
tomo_bell = StateTomographyFitter(job_tomo.result(), qst_bell)
#no correction
rho_bell = tomo_bell.fit(method='lstsq')
F_bell = qi.state_fidelity(rho_bell, target_state_bell)
print('State fidelity (no correction): F = {:.5f}'.format(F_bell))
#correct data
correct_tomo_results = meas_fitter.filter.apply(job_tomo.result(), method='least_squares')
tomo_bell_mit = StateTomographyFitter(correct_tomo_results, qst_bell)
rho_fit_bell_mit = tomo_bell_mit.fit(method='lstsq')
F_bell_mit = qi.state_fidelity(rho_fit_bell_mit, target_state_bell)
print('State fidelity (w/ correction): F = {:.5f}'.format(F_bell_mit))
State fidelity (no correction): F = 0.56463
State fidelity (w/ correction): F = 0.98752
1量子ビットの状態トモグラフィーの例¶
[7]:
# Process tomography of a Hadamard gate
q = QuantumRegister(1)
circ = QuantumCircuit(q)
circ.h(q[0])
# Get the ideal unitary operator
target_unitary = qi.Operator(circ)
# Generate process tomography circuits and run on qasm simulator
qpt_circs = process_tomography_circuits(circ, q)
job = qiskit.execute(qpt_circs, Aer.get_backend('qasm_simulator'), shots=4000)
# Extract tomography data so that counts are indexed by measurement configuration
qpt_tomo = ProcessTomographyFitter(job.result(), qpt_circs)
qpt_tomo.data
[7]:
{(('Zp',), ('X',)): {'0': 4000},
(('Zp',), ('Y',)): {'0': 2013, '1': 1987},
(('Zp',), ('Z',)): {'0': 1973, '1': 2027},
(('Zm',), ('X',)): {'1': 4000},
(('Zm',), ('Y',)): {'0': 1938, '1': 2062},
(('Zm',), ('Z',)): {'0': 1979, '1': 2021},
(('Xp',), ('X',)): {'0': 1991, '1': 2009},
(('Xp',), ('Y',)): {'0': 1998, '1': 2002},
(('Xp',), ('Z',)): {'0': 4000},
(('Yp',), ('X',)): {'0': 1990, '1': 2010},
(('Yp',), ('Y',)): {'1': 4000},
(('Yp',), ('Z',)): {'0': 1997, '1': 2003}}
[8]:
# Tomographic reconstruction
t = time.time()
choi_fit_lstsq = qpt_tomo.fit(method='lstsq')
print('Fit time:', time.time() - t)
print('Average gate fidelity: F = {:.5f}'.format(qi.average_gate_fidelity(choi_fit_lstsq, target=target_unitary)))
Fit time: 0.008244037628173828
Average gate fidelity: F = 0.99722
2量子ビットスワップゲートの 1量子ビットプロセストモグラフィーについて¶
qubit-0 を準備し、 qubit-1 を測定して、再構成されたチャネルが恒等演算になるようにします。
[9]:
# Process tomography of a Hadamard gate
q = QuantumRegister(2)
circ = QuantumCircuit(q)
circ.swap(q[0], q[1])
# Generate process tomography circuits and run on qasm simulator
# We use the optional prepared_qubits kwarg to specify that the prepared qubit was different to measured qubit
qpt_circs = process_tomography_circuits(circ, q[1], prepared_qubits=q[0])
job = qiskit.execute(qpt_circs, Aer.get_backend('qasm_simulator'), shots=2000)
# Extract tomography data so that counts are indexed by measurement configuration
qpt_tomo = ProcessTomographyFitter(job.result(), qpt_circs)
qpt_tomo.data
[9]:
{(('Zp',), ('X',)): {'0': 975, '1': 1025},
(('Zp',), ('Y',)): {'0': 1009, '1': 991},
(('Zp',), ('Z',)): {'0': 2000},
(('Zm',), ('X',)): {'0': 1046, '1': 954},
(('Zm',), ('Y',)): {'0': 989, '1': 1011},
(('Zm',), ('Z',)): {'1': 2000},
(('Xp',), ('X',)): {'0': 2000},
(('Xp',), ('Y',)): {'0': 1016, '1': 984},
(('Xp',), ('Z',)): {'0': 1003, '1': 997},
(('Yp',), ('X',)): {'0': 969, '1': 1031},
(('Yp',), ('Y',)): {'0': 2000},
(('Yp',), ('Z',)): {'0': 992, '1': 1008}}
[10]:
# Tomographic reconstruction
t = time.time()
choi_fit = qpt_tomo.fit(method='lstsq')
print('Fit time:', time.time() - t)
print('Average gate fidelity: F = {:.5f}'.format(qi.average_gate_fidelity(choi_fit)))
Fit time: 0.008944988250732422
Average gate fidelity: F = 0.99541
Advances examples¶
Generating and fitting random states¶
We now test the functions on the state generated by a circuit consisting of a layer of random single qubit unitaries u3.
[11]:
def random_u_tomo(nq, shots):
def rand_angles():
return tuple(2 * np.pi * np.random.random(3) - np.pi)
q = QuantumRegister(nq)
circ = QuantumCircuit(q)
for j in range(nq):
circ.u(*rand_angles(), q[j])
target_state = qi.Statevector.from_instruction(circ)
qst_circs = state_tomography_circuits(circ, q)
job = qiskit.execute(qst_circs, Aer.get_backend('qasm_simulator'),
shots=shots)
tomo_data = StateTomographyFitter(job.result(), qst_circs)
rho_fit = tomo_data.fit(method='lstsq')
print('F = {:.5f}'.format(qi.state_fidelity(rho_fit, target_state)))
[12]:
for j in range(5):
print('Random single-qubit unitaries: set {}'.format(j))
random_u_tomo(3, 5000)
Random single-qubit unitaries: set 0
F = 0.99913
Random single-qubit unitaries: set 1
F = 0.99580
Random single-qubit unitaries: set 2
F = 0.99601
Random single-qubit unitaries: set 3
F = 0.98930
Random single-qubit unitaries: set 4
F = 0.99547
5-Qubit Bell State¶
[13]:
# Create a state preparation circuit
q5 = QuantumRegister(5)
bell5 = QuantumCircuit(q5)
bell5.h(q5[0])
for j in range(4):
bell5.cx(q5[j], q5[j + 1])
# Get ideal output state
target_state_bell5 = qi.Statevector.from_instruction(bell5)
# Generate circuits and run on simulator
t = time.time()
qst_bell5 = state_tomography_circuits(bell5, q5)
job = qiskit.execute(qst_bell5, Aer.get_backend('qasm_simulator'), shots=5000)
# Extract tomography data so that counts are indexed by measurement configuration
tomo_bell5 = StateTomographyFitter(job.result(), qst_bell5)
print('Time taken:', time.time() - t)
Time taken: 7.226781845092773
[14]:
t = time.time()
rho_fit_bell5 = tomo_bell5.fit(method='lstsq')
print('Time taken:', time.time() - t)
print('State fidelity: F = {:.5f}'.format(qi.state_fidelity(rho_fit_bell5, target_state_bell5)))
Time taken: 3.6470580101013184
State fidelity: F = 0.99430
2-Qubit Conditional State Tomography¶
In this example, we have a three-qubit system where one of the qubits will be an ancilla for performing state tomography, i.e. only perform tomography when the third qubit is in the state “1”. The circuit is setup in such a way that after conditional tomography we will get a Bell state on the first two qubits.
First make a 3Q GHZ state with no classical measurements.
[15]:
# Create the actual circuit
q2 = QuantumRegister(3)
ghz = QuantumCircuit(q2)
ghz.h(q2[0])
ghz.cx(q2[0], q2[1])
ghz.cx(q2[1], q2[2])
ghz.h(q2[2])
print(ghz)
┌───┐
q11_0: ┤ H ├──■────────────
└───┘┌─┴─┐
q11_1: ─────┤ X ├──■───────
└───┘┌─┴─┐┌───┐
q11_2: ──────────┤ X ├┤ H ├
└───┘└───┘
Here we are going to generate and run the state tomography circuits. Only pass the registers we want to perform state tomography on. The code will generate a new classical register for only those measurements.
[16]:
qst_ghz = state_tomography_circuits(ghz, [q2[0],q2[1]])
print(qst_ghz[0])
┌───┐ ░ ┌───┐┌─┐
q11_0: ┤ H ├──■─────────────░─┤ H ├┤M├───
└───┘┌─┴─┐ ░ ├───┤└╥┘┌─┐
q11_1: ─────┤ X ├──■────────░─┤ H ├─╫─┤M├
└───┘┌─┴─┐┌───┐ ░ └───┘ ║ └╥┘
q11_2: ──────────┤ X ├┤ H ├─░───────╫──╫─
└───┘└───┘ ░ ║ ║
c10: 2/═════════════════════════════╩══╩═
0 1
Now make a copy of this circuit (we will need it for the fitter) and make a new circuit with an ancilla measurement attached (this is what will be run):
[17]:
#Make a copy without the ancilla register
qst_ghz_no_anc = deepcopy(qst_ghz)
ca = ClassicalRegister(1)
for qst_ghz_circ in qst_ghz:
qst_ghz_circ.add_register(ca)
qst_ghz_circ.measure(q2[2],ca[0])
[18]:
#Run in Aer
job = qiskit.execute(qst_ghz, Aer.get_backend('qasm_simulator'), shots=10000)
raw_results = job.result()
Before sending the results to the state tomography fitter we must strip the register for the Q2 measurement and only keep the results when that register is 1.
[19]:
new_result = deepcopy(raw_results)
for resultidx, _ in enumerate(raw_results.results):
old_counts = raw_results.get_counts(resultidx)
new_counts = {}
#change the size of the classical register
new_result.results[resultidx].header.creg_sizes = [new_result.results[resultidx].header.creg_sizes[0]]
new_result.results[resultidx].header.clbit_labels = new_result.results[resultidx].header.clbit_labels[0:-1]
new_result.results[resultidx].header.memory_slots = 2
for reg_key in old_counts:
reg_bits = reg_key.split(' ')
if reg_bits[0]=='1':
new_counts[reg_bits[1]]=old_counts[reg_key]
new_result.results[resultidx].data.counts = new_counts
[20]:
tomo_bell = StateTomographyFitter(new_result, qst_ghz_no_anc)
# Perform the tomography fit
# which outputs a density matrix
rho_fit_bell = tomo_bell.fit(method='lstsq')
[21]:
np.around(rho_fit_bell, 3)
[21]:
array([[ 0.502+0.j , 0. +0.001j, 0.004+0.001j, -0.498-0.006j],
[ 0. -0.001j, 0.001+0.j , -0.001-0.j , -0.002+0.j ],
[ 0.004-0.001j, -0.001+0.j , 0.001+0.j , -0.003+0.001j],
[-0.498+0.006j, -0.002-0.j , -0.003-0.001j, 0.497+0.j ]])
Gate set tomography¶
1-Qubit gate set tomography Examples¶
The main difference between gate set tomography and process tomography is that in gate set tomography, the input consists of a gate set basis: A set of gates that are both used in the initialization/measurement phase of the tomography, and are being reconstructed.
Qiskit supplies a default gateset basis; in order to use this gateset basis in order to reconstruct another gate, this gate should be added to the basis. We use the following method to simplify the process:
[22]:
from qiskit.ignis.verification.tomography.basis import default_gateset_basis
def collect_tomography_data(shots=10000,
noise_model=None,
gateset_basis='Standard GST'):
backend_qasm = Aer.get_backend('qasm_simulator')
circuits = gateset_tomography_circuits(gateset_basis=gateset_basis)
qobj = assemble(circuits, shots=shots)
result = backend_qasm.run(qobj, noise_model=noise_model).result()
fitter = GatesetTomographyFitter(result, circuits, gateset_basis)
return fitter
def gate_set_tomography(gate, noise_model=None):
basis = default_gateset_basis()
basis.add_gate(gate)
fitter = collect_tomography_data(shots=10000, noise_model=noise_model, gateset_basis=basis)
result_gates = fitter.fit()
result_gate = result_gates[gate.name]
return Choi(result_gate)
Noiseless 1-qubit gate set tomography¶
[23]:
target_unitary = qi.Operator(HGate())
t = time.time()
channel_fit = gate_set_tomography(HGate())
print('fit time:', time.time() - t)
print('Average gate fidelity: F = {:.5f}'.format(qi.average_gate_fidelity(channel_fit, target_unitary)))
fit time: 2.530395746231079
Average gate fidelity: F = 1.00084
[26]:
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
/Users/cjwood/anaconda3/envs/qiskit-legacy/lib/python3.7/site-packages/ipykernel/ipkernel.py:287: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.
and should_run_async(code)
/Users/cjwood/anaconda3/envs/qiskit-legacy/lib/python3.7/site-packages/qiskit/tools/jupyter/__init__.py:134: RuntimeWarning: matplotlib can't be found, ensure you have matplotlib and other visualization dependencies installed. You can run '!pip install qiskit-terra[visualization]' to install it from jupyter
"jupyter", RuntimeWarning)
Version Information
Qiskit Software | Version |
---|---|
Qiskit | 0.22.0 |
Terra | 0.15.2 |
Aer | 0.6.1 |
Ignis | 0.4.0 |
Aqua | 0.7.5 |
IBM Q Provider | 0.10.0 |
System information | |
Python | 3.7.9 (default, Aug 31 2020, 07:22:35) [Clang 10.0.0 ] |
OS | Darwin |
CPUs | 6 |
Memory (Gb) | 32.0 |
Tue Nov 03 13:53:54 2020 EST |
This code is a part of Qiskit
© Copyright IBM 2017, 2020.
This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.