French
Langues
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Note

Cette page a été générée à partir de tutorials/noise/5_quantum_volume.ipynb.

Exécuter en mode interactif dans le ` IBM Quantum lab <https://quantum-computing.ibm.com/jupyter/tutorial/noise/8_tomography.ipynb>` _.

Tomographie quantique

Introduction

La tomographie quantique est une méthode expérimentale pour reconstruire une description d’une partie du système quantique à partir des résultats de mesure d’un ensemble spécifique d’expériences. Dans Qiskit, nous mettons en œuvre les types de tomographie suivants:

  1. ** Tomographie de l’état quantique * *: Compte tenu d’un circuit qui prépare un système dans un état donné, il s’agit de reconstruire une description de la matrice de densité :math:`rho ` de l’état réel obtenu dans le système.

  2. Quantum process tomography: Given a circuit, reconstruct a description of the quantum channel \(\mathcal{E}\) that describes the circuit’s operator when running on the system.

  3. Quantum gate set tomography: Performs process tomography on a set of gates in a self-consistent manner, meaning quantum noises on gates used by the tomography process itself is also taken into account.

Ce bloc-notes donne des exemples d’utilisation des modules ignis.verification.tomography.

[1]:
# Needed for functions
import numpy as np
import time
from copy import deepcopy

# Import Qiskit classes
import qiskit
import qiskit.quantum_info as qi
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister, Aer
from qiskit.providers.aer import noise
from qiskit.compiler import assemble

# Tomography functions
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.ignis.verification.tomography import process_tomography_circuits, ProcessTomographyFitter
from qiskit.ignis.verification.tomography import gateset_tomography_circuits, GatesetTomographyFitter
import qiskit.ignis.mitigation.measurement as mc

# Auxiliary methods
from qiskit.quantum_info import Choi, Kraus
from qiskit.extensions import HGate, XGate

Exemples initiaux

Exemple de tomographie d’état à 2 qubits

Dans l’exemple ci-dessous, nous voulons réaliser une tomographie d’état sur un état de Bell à deux qubits entre les qubits 3 et 5. Pour construire le circuit de référence, nous générons le vecteur d’état attendu en utilisant statevector_simulateur entre les qubits 0 et 1.

[2]:
# Create the expected statevector
q2 = QuantumRegister(2)
bell = QuantumCircuit(q2)
bell.h(q2[0])
bell.cx(q2[0], q2[1])
print(bell)

target_state_bell = qi.Statevector.from_instruction(bell)
print(target_state_bell)
      ┌───┐
q0_0: ┤ H ├──■──
      └───┘┌─┴─┐
q0_1: ─────┤ X ├
           └───┘
Statevector([0.70710678+0.j, 0.        +0.j, 0.        +0.j,
             0.70710678+0.j],
            dims=(2, 2))
[3]:
# Create the actual circuit
q2 = QuantumRegister(6)
bell = QuantumCircuit(q2)
bell.h(q2[3])
bell.cx(q2[3], q2[5])
print(bell)

q1_0: ──────────

q1_1: ──────────

q1_2: ──────────
      ┌───┐
q1_3: ┤ H ├──■──
      └───┘  │
q1_4: ───────┼──
           ┌─┴─┐
q1_5: ─────┤ X ├
           └───┘

Ici, nous allons générer et exécuter les circuits de tomographie d’état. En ne passant que dans les 2 registres que nous voulons mesurer, la tomographie d’état ne fonctionnera que sur l’espace Hilbert réduit de \(2^2\). Cependant, si nous passons le registre entier dans le module de tomographie d’état il essaiera fonctionner sur l’espace correspondant à l’espace \(2^6\).

[4]:
# Generate circuits and run on simulator
t = time.time()

# Generate the state tomography circuits.
qst_bell = state_tomography_circuits(bell, [q2[3], q2[5]])

# Execute
job = qiskit.execute(qst_bell, Aer.get_backend('qasm_simulator'), shots=5000)
print('Time taken:', time.time() - t)

# Fit result
tomo_fitter_bell = StateTomographyFitter(job.result(), qst_bell)
Time taken: 0.3742101192474365

Le module produira une matrice de densité ordonnée selon la façon dont nous avons passé les registres à state_tomography_circuits.

[5]:
# Perform the tomography fit
# which outputs a density matrix
rho_fit_bell = tomo_fitter_bell.fit(method='lstsq')
F_bell = qi.state_fidelity(rho_fit_bell, target_state_bell)
print('State Fidelity: F = {:.5f}'.format(F_bell))
State Fidelity: F = 0.99796

Répéter l’exemple avec le bruit de mesure

[6]:
#Add measurement noise
noise_model = noise.NoiseModel()
for qubit in range(6):
    read_err = noise.errors.readout_error.ReadoutError([[0.75, 0.25],[0.1,0.9]])
    noise_model.add_readout_error(read_err,[qubit])

#generate the calibration circuits
meas_calibs, state_labels = mc.complete_meas_cal(qubit_list=[3,5])

backend = Aer.get_backend('qasm_simulator')
job_cal = qiskit.execute(meas_calibs, backend=backend, shots=15000, noise_model=noise_model)
job_tomo = qiskit.execute(qst_bell, backend=backend, shots=15000, noise_model=noise_model)

meas_fitter = mc.CompleteMeasFitter(job_cal.result(),state_labels)

tomo_bell = StateTomographyFitter(job_tomo.result(), qst_bell)

#no correction
rho_bell = tomo_bell.fit(method='lstsq')
F_bell = qi.state_fidelity(rho_bell, target_state_bell)
print('State fidelity (no correction): F = {:.5f}'.format(F_bell))

#correct data
correct_tomo_results = meas_fitter.filter.apply(job_tomo.result(), method='least_squares')
tomo_bell_mit = StateTomographyFitter(correct_tomo_results, qst_bell)
rho_fit_bell_mit = tomo_bell_mit.fit(method='lstsq')
F_bell_mit = qi.state_fidelity(rho_fit_bell_mit, target_state_bell)
print('State fidelity (w/ correction): F = {:.5f}'.format(F_bell_mit))
State fidelity (no correction): F = 0.56463
State fidelity (w/ correction): F = 0.98752

Exemple de tomographie d’état à 1 qubit

[7]:
# Process tomography of a Hadamard gate
q = QuantumRegister(1)
circ = QuantumCircuit(q)
circ.h(q[0])

# Get the ideal unitary operator
target_unitary = qi.Operator(circ)

# Generate process tomography circuits and run on qasm simulator
qpt_circs = process_tomography_circuits(circ, q)
job = qiskit.execute(qpt_circs, Aer.get_backend('qasm_simulator'), shots=4000)

# Extract tomography data so that counts are indexed by measurement configuration
qpt_tomo = ProcessTomographyFitter(job.result(), qpt_circs)
qpt_tomo.data
[7]:
{(('Zp',), ('X',)): {'0': 4000},
 (('Zp',), ('Y',)): {'0': 2013, '1': 1987},
 (('Zp',), ('Z',)): {'0': 1973, '1': 2027},
 (('Zm',), ('X',)): {'1': 4000},
 (('Zm',), ('Y',)): {'0': 1938, '1': 2062},
 (('Zm',), ('Z',)): {'0': 1979, '1': 2021},
 (('Xp',), ('X',)): {'0': 1991, '1': 2009},
 (('Xp',), ('Y',)): {'0': 1998, '1': 2002},
 (('Xp',), ('Z',)): {'0': 4000},
 (('Yp',), ('X',)): {'0': 1990, '1': 2010},
 (('Yp',), ('Y',)): {'1': 4000},
 (('Yp',), ('Z',)): {'0': 1997, '1': 2003}}
[8]:
# Tomographic reconstruction
t = time.time()
choi_fit_lstsq = qpt_tomo.fit(method='lstsq')

print('Fit time:', time.time() - t)
print('Average gate fidelity: F = {:.5f}'.format(qi.average_gate_fidelity(choi_fit_lstsq, target=target_unitary)))
Fit time: 0.008244037628173828
Average gate fidelity: F = 0.99722

tomographie du processus 1-qubit de la porte d’échange à deux qubits

Nous préparerons qubit-0 et mesurerons qubit-1 pour que le canal reconstruit soit une identité.

[9]:
# Process tomography of a Hadamard gate
q = QuantumRegister(2)
circ = QuantumCircuit(q)
circ.swap(q[0], q[1])

# Generate process tomography circuits and run on qasm simulator
# We use the optional prepared_qubits kwarg to specify that the prepared qubit was different to measured qubit
qpt_circs = process_tomography_circuits(circ, q[1], prepared_qubits=q[0])
job = qiskit.execute(qpt_circs, Aer.get_backend('qasm_simulator'), shots=2000)

# Extract tomography data so that counts are indexed by measurement configuration
qpt_tomo = ProcessTomographyFitter(job.result(), qpt_circs)
qpt_tomo.data
[9]:
{(('Zp',), ('X',)): {'0': 975, '1': 1025},
 (('Zp',), ('Y',)): {'0': 1009, '1': 991},
 (('Zp',), ('Z',)): {'0': 2000},
 (('Zm',), ('X',)): {'0': 1046, '1': 954},
 (('Zm',), ('Y',)): {'0': 989, '1': 1011},
 (('Zm',), ('Z',)): {'1': 2000},
 (('Xp',), ('X',)): {'0': 2000},
 (('Xp',), ('Y',)): {'0': 1016, '1': 984},
 (('Xp',), ('Z',)): {'0': 1003, '1': 997},
 (('Yp',), ('X',)): {'0': 969, '1': 1031},
 (('Yp',), ('Y',)): {'0': 2000},
 (('Yp',), ('Z',)): {'0': 992, '1': 1008}}
[10]:
# Tomographic reconstruction

t = time.time()
choi_fit = qpt_tomo.fit(method='lstsq')
print('Fit time:', time.time() - t)
print('Average gate fidelity: F = {:.5f}'.format(qi.average_gate_fidelity(choi_fit)))
Fit time: 0.008944988250732422
Average gate fidelity: F = 0.99541

Exemples d’avances

Génération et ajustement d’états aléatoires

Nous testons maintenant les fonctions sur l’état généré par un circuit constitué d’une couche de portes unitaires uniques aléatoires u3.

[11]:
def random_u_tomo(nq, shots):

    def rand_angles():
        return tuple(2 * np.pi * np.random.random(3) - np.pi)
    q = QuantumRegister(nq)
    circ = QuantumCircuit(q)
    for j in range(nq):
        circ.u(*rand_angles(), q[j])
    target_state = qi.Statevector.from_instruction(circ)

    qst_circs = state_tomography_circuits(circ, q)
    job = qiskit.execute(qst_circs, Aer.get_backend('qasm_simulator'),
                         shots=shots)
    tomo_data = StateTomographyFitter(job.result(), qst_circs)
    rho_fit = tomo_data.fit(method='lstsq')

    print('F = {:.5f}'.format(qi.state_fidelity(rho_fit, target_state)))
[12]:
for j in range(5):
    print('Random single-qubit unitaries: set {}'.format(j))
    random_u_tomo(3, 5000)
Random single-qubit unitaries: set 0
F = 0.99913
Random single-qubit unitaries: set 1
F = 0.99580
Random single-qubit unitaries: set 2
F = 0.99601
Random single-qubit unitaries: set 3
F = 0.98930
Random single-qubit unitaries: set 4
F = 0.99547

État de Bell à 5-qubits

[13]:
# Create a state preparation circuit
q5 = QuantumRegister(5)
bell5 = QuantumCircuit(q5)
bell5.h(q5[0])
for j in range(4):
    bell5.cx(q5[j], q5[j + 1])

# Get ideal output state
target_state_bell5 = qi.Statevector.from_instruction(bell5)

# Generate circuits and run on simulator
t = time.time()
qst_bell5 = state_tomography_circuits(bell5, q5)
job = qiskit.execute(qst_bell5, Aer.get_backend('qasm_simulator'), shots=5000)

# Extract tomography data so that counts are indexed by measurement configuration
tomo_bell5 = StateTomographyFitter(job.result(), qst_bell5)
print('Time taken:', time.time() - t)
Time taken: 7.226781845092773
[14]:
t = time.time()
rho_fit_bell5 = tomo_bell5.fit(method='lstsq')
print('Time taken:', time.time() - t)
print('State fidelity: F = {:.5f}'.format(qi.state_fidelity(rho_fit_bell5, target_state_bell5)))
Time taken: 3.6470580101013184
State fidelity: F = 0.99430

Tomographie d’état conditionnel 2-qubits

Dans cet exemple, nous avons un système à trois qubits où l’un des qubits sera un qubit auxiliaire pour effectuer la tomographie d’état, c’est-à-dire que la tomographie sera effectuée seulement lorsque le troisième qubit est à l’état « 1 ». Le circuit est configuré de telle façon qu’après une tomographie conditionnelle nous aurons un état de Bell sur les deux premiers qubits.

Construisons d’abord un état GHZ sur 3 qubits sans mesures classiques.

[15]:
# Create the actual circuit
q2 = QuantumRegister(3)
ghz = QuantumCircuit(q2)
ghz.h(q2[0])
ghz.cx(q2[0], q2[1])
ghz.cx(q2[1], q2[2])
ghz.h(q2[2])
print(ghz)
       ┌───┐
q11_0: ┤ H ├──■────────────
       └───┘┌─┴─┐
q11_1: ─────┤ X ├──■───────
            └───┘┌─┴─┐┌───┐
q11_2: ──────────┤ X ├┤ H ├
                 └───┘└───┘

Ici, nous allons générer et exécuter les circuits de tomographie d’état. Nous ne transmettons que les registres nécessaires sur la tomographie d’état. Le code générera un nouveau registre classique seulement pour les mesures correspondantes.

[16]:
qst_ghz = state_tomography_circuits(ghz, [q2[0],q2[1]])
print(qst_ghz[0])
       ┌───┐                ░ ┌───┐┌─┐
q11_0: ┤ H ├──■─────────────░─┤ H ├┤M├───
       └───┘┌─┴─┐           ░ ├───┤└╥┘┌─┐
q11_1: ─────┤ X ├──■────────░─┤ H ├─╫─┤M├
            └───┘┌─┴─┐┌───┐ ░ └───┘ ║ └╥┘
q11_2: ──────────┤ X ├┤ H ├─░───────╫──╫─
                 └───┘└───┘ ░       ║  ║
c10: 2/═════════════════════════════╩══╩═
                                    0  1

Maintenant, faites une copie de ce circuit (nous en aurons besoin pour l’optimiseur) et faites un nouveau circuit avec un qubit auxiliaire pour la mesure (c’est celui-ci qui sera exécuté):

[17]:
#Make a copy without the ancilla register
qst_ghz_no_anc = deepcopy(qst_ghz)
ca = ClassicalRegister(1)
for qst_ghz_circ in qst_ghz:
    qst_ghz_circ.add_register(ca)
    qst_ghz_circ.measure(q2[2],ca[0])
[18]:
#Run in Aer
job = qiskit.execute(qst_ghz, Aer.get_backend('qasm_simulator'), shots=10000)
raw_results = job.result()

Avant d’envoyer les résultats au module de tomographie d’état, nous devons supprimer le registre pour la mesure de Q2 et conserver les résultats seulement lorsque ce registre est 1.

[19]:

new_result = deepcopy(raw_results)

for resultidx, _ in enumerate(raw_results.results):
    old_counts = raw_results.get_counts(resultidx)
    new_counts = {}

    #change the size of the classical register
    new_result.results[resultidx].header.creg_sizes = [new_result.results[resultidx].header.creg_sizes[0]]
    new_result.results[resultidx].header.clbit_labels = new_result.results[resultidx].header.clbit_labels[0:-1]
    new_result.results[resultidx].header.memory_slots = 2

    for reg_key in old_counts:
        reg_bits = reg_key.split(' ')
        if reg_bits[0]=='1':
            new_counts[reg_bits[1]]=old_counts[reg_key]

        new_result.results[resultidx].data.counts = new_counts
[20]:
tomo_bell = StateTomographyFitter(new_result, qst_ghz_no_anc)
# Perform the tomography fit
# which outputs a density matrix
rho_fit_bell = tomo_bell.fit(method='lstsq')
[21]:
np.around(rho_fit_bell, 3)
[21]:
array([[ 0.502+0.j   ,  0.   +0.001j,  0.004+0.001j, -0.498-0.006j],
       [ 0.   -0.001j,  0.001+0.j   , -0.001-0.j   , -0.002+0.j   ],
       [ 0.004-0.001j, -0.001+0.j   ,  0.001+0.j   , -0.003+0.001j],
       [-0.498+0.006j, -0.002-0.j   , -0.003-0.001j,  0.497+0.j   ]])

Tomographie d’ensemble de portes

Exemple de tomographie d’état à 1 qubit

La principale différence entre la tomographie de l’ensemble de portes et la tomographie des processus est que dans la tomographie de l’ensemble des portes, l’entrée se compose d’un ensemble de portes: un ensemble de barrières qui sont tous les deux utilisés dans la phase d’initialisation / mesure de la tomographie, et sont en cours de reconstruction.

Qiskit fournit une base d’ensemble de portes par défaut ; afin d’utiliser cette base d’ensemble de portes pour reconstruire une autre porte, cette porte devrait être ajoutée à la base. Nous utilisons la méthode suivante pour simplifier le processus:

[22]:
from qiskit.ignis.verification.tomography.basis import default_gateset_basis

def collect_tomography_data(shots=10000,
                            noise_model=None,
                            gateset_basis='Standard GST'):
    backend_qasm = Aer.get_backend('qasm_simulator')
    circuits = gateset_tomography_circuits(gateset_basis=gateset_basis)
    qobj = assemble(circuits, shots=shots)
    result = backend_qasm.run(qobj, noise_model=noise_model).result()
    fitter = GatesetTomographyFitter(result, circuits, gateset_basis)
    return fitter

def gate_set_tomography(gate, noise_model=None):
    basis = default_gateset_basis()
    basis.add_gate(gate)
    fitter = collect_tomography_data(shots=10000, noise_model=noise_model, gateset_basis=basis)
    result_gates = fitter.fit()
    result_gate = result_gates[gate.name]
    return Choi(result_gate)

Tomographie de portes à 1 qubit sans bruit

[23]:
target_unitary = qi.Operator(HGate())
t = time.time()
channel_fit = gate_set_tomography(HGate())
print('fit time:', time.time() - t)
print('Average gate fidelity: F = {:.5f}'.format(qi.average_gate_fidelity(channel_fit, target_unitary)))
fit time: 2.530395746231079
Average gate fidelity: F = 1.00084
[26]:
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
/Users/cjwood/anaconda3/envs/qiskit-legacy/lib/python3.7/site-packages/ipykernel/ipkernel.py:287: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.
  and should_run_async(code)
/Users/cjwood/anaconda3/envs/qiskit-legacy/lib/python3.7/site-packages/qiskit/tools/jupyter/__init__.py:134: RuntimeWarning: matplotlib can't be found, ensure you have matplotlib and other visualization dependencies installed. You can run '!pip install qiskit-terra[visualization]' to install it from jupyter
  "jupyter", RuntimeWarning)

Version Information

Qiskit SoftwareVersion
Qiskit0.22.0
Terra0.15.2
Aer0.6.1
Ignis0.4.0
Aqua0.7.5
IBM Q Provider0.10.0
System information
Python3.7.9 (default, Aug 31 2020, 07:22:35) [Clang 10.0.0 ]
OSDarwin
CPUs6
Memory (Gb)32.0
Tue Nov 03 13:53:54 2020 EST

This code is a part of Qiskit

© Copyright IBM 2017, 2020.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.