LogNormalDistribution

class LogNormalDistribution(num_target_qubits, mu=0, sigma=1, low=0, high=1)[source]

The Univariate Log-Normal Distribution.

Log-normal distribution, truncated to lower and upper bound and discretized on a grid defined by the number of qubits.

Parameters
  • num_target_qubits (int) – Number of qubits it acts on, has a minimum value of 1.

  • mu (float) – Expected value of considered normal distribution

  • sigma (float) – Standard deviation of considered normal distribution

  • low (float) – Lower bound, i.e., the value corresponding to |0…0> (assuming an equidistant grid)

  • high (float) – Upper bound, i.e., the value corresponding to |1…1> (assuming an equidistant grid)

Attributes

LogNormalDistribution.high

returns high

LogNormalDistribution.low

returns low

LogNormalDistribution.num_target_qubits

Returns the number of target qubits

LogNormalDistribution.num_values

returns number of values

LogNormalDistribution.probabilities

returns probabilities

LogNormalDistribution.values

returns values

Methods

LogNormalDistribution.build(qc, q[, …])

LogNormalDistribution.build_controlled(qc, …)

Adds corresponding controlled sub-circuit to given circuit

LogNormalDistribution.build_controlled_inverse(qc, …)

Adds controlled inverse of corresponding sub-circuit to given circuit

LogNormalDistribution.build_controlled_inverse_power(qc, …)

Adds controlled, inverse, power of corresponding circuit.

LogNormalDistribution.build_controlled_power(qc, …)

Adds controlled power of corresponding circuit.

LogNormalDistribution.build_inverse(qc, q[, …])

Adds inverse of corresponding sub-circuit to given circuit

LogNormalDistribution.build_inverse_power(qc, …)

Adds inverse power of corresponding circuit.

LogNormalDistribution.build_power(qc, q, power)

Adds power of corresponding circuit.

LogNormalDistribution.get_num_qubits()

returns number of qubits

LogNormalDistribution.get_num_qubits_controlled()

returns number of qubits controlled

LogNormalDistribution.pdf_to_probabilities(…)

Takes a probability density function (pdf), and returns a truncated and discretized array of probabilities corresponding to it

LogNormalDistribution.required_ancillas()

returns required ancillas

LogNormalDistribution.required_ancillas_controlled()

returns required ancillas controlled