TNC

class TNC(maxiter=100, disp=False, accuracy=0, ftol=- 1, xtol=- 1, gtol=- 1, tol=None, eps=1e-08)[source]

Truncated Newton (TNC) optimizer.

TNC uses a truncated Newton algorithm to minimize a function with variables subject to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the CG method as it wraps a C implementation and allows each variable to be given upper and lower bounds.

Uses scipy.optimize.minimize TNC For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Parameters
  • maxiter (int) – Maximum number of function evaluation.

  • disp (bool) – Set to True to print convergence messages.

  • accuracy (float) – Relative precision for finite difference calculations. If <= machine_precision, set to sqrt(machine_precision). Defaults to 0.

  • ftol (float) – Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol is set to 0.0 defaults to -1.

  • xtol (float) – Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1.

  • gtol (float) – Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1.

  • tol (Optional[float]) – Tolerance for termination.

  • eps (float) – Step size used for numerical approximation of the Jacobian.

Attributes

TNC.bounds_support_level

Returns bounds support level

TNC.gradient_support_level

Returns gradient support level

TNC.initial_point_support_level

Returns initial point support level

TNC.is_bounds_ignored

Returns is bounds ignored

TNC.is_bounds_required

Returns is bounds required

TNC.is_bounds_supported

Returns is bounds supported

TNC.is_gradient_ignored

Returns is gradient ignored

TNC.is_gradient_required

Returns is gradient required

TNC.is_gradient_supported

Returns is gradient supported

TNC.is_initial_point_ignored

Returns is initial point ignored

TNC.is_initial_point_required

Returns is initial point required

TNC.is_initial_point_supported

Returns is initial point supported

TNC.setting

Return setting

Methods

TNC.get_support_level()

return support level dictionary

TNC.gradient_num_diff(x_center, f, epsilon)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

TNC.optimize(num_vars, objective_function[, …])

Perform optimization.

TNC.print_options()

Print algorithm-specific options.

TNC.set_max_evals_grouped(limit)

Set max evals grouped

TNC.set_options(**kwargs)

Sets or updates values in the options dictionary.

TNC.wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.