SLSQP

class SLSQP(maxiter=100, disp=False, ftol=1e-06, tol=None, eps=1.4901161193847656e-08)[source]

Sequential Least SQuares Programming optimizer.

SLSQP minimizes a function of several variables with any combination of bounds, equality and inequality constraints. The method wraps the SLSQP Optimization subroutine originally implemented by Dieter Kraft.

SLSQP is ideal for mathematical problems for which the objective function and the constraints are twice continuously differentiable. Note that the wrapper handles infinite values in bounds by converting them into large floating values.

Uses scipy.optimize.minimize SLSQP. For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Parameters
  • maxiter (int) – Maximum number of iterations.

  • disp (bool) – Set to True to print convergence messages.

  • ftol (float) – Precision goal for the value of f in the stopping criterion.

  • tol (Optional[float]) – Tolerance for termination.

  • eps (float) – Step size used for numerical approximation of the Jacobian.

Attributes

SLSQP.bounds_support_level

Returns bounds support level

SLSQP.gradient_support_level

Returns gradient support level

SLSQP.initial_point_support_level

Returns initial point support level

SLSQP.is_bounds_ignored

Returns is bounds ignored

SLSQP.is_bounds_required

Returns is bounds required

SLSQP.is_bounds_supported

Returns is bounds supported

SLSQP.is_gradient_ignored

Returns is gradient ignored

SLSQP.is_gradient_required

Returns is gradient required

SLSQP.is_gradient_supported

Returns is gradient supported

SLSQP.is_initial_point_ignored

Returns is initial point ignored

SLSQP.is_initial_point_required

Returns is initial point required

SLSQP.is_initial_point_supported

Returns is initial point supported

SLSQP.setting

Return setting

Methods

SLSQP.get_support_level()

Return support level dictionary

SLSQP.gradient_num_diff(x_center, f, epsilon)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

SLSQP.optimize(num_vars, objective_function)

Perform optimization.

SLSQP.print_options()

Print algorithm-specific options.

SLSQP.set_max_evals_grouped(limit)

Set max evals grouped

SLSQP.set_options(**kwargs)

Sets or updates values in the options dictionary.

SLSQP.wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.