NFT

class NFT(maxiter=None, maxfev=1024, disp=False, reset_interval=32)[source]

Nakanishi-Fujii-Todo algorithm.

See https://arxiv.org/abs/1903.12166

Built out using scipy framework, for details, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.

Parameters
  • maxiter (Optional[int]) – Maximum number of iterations to perform.

  • maxfev (int) – Maximum number of function evaluations to perform.

  • disp (bool) – disp

  • reset_interval (int) – The minimum estimates directly once in reset_interval times.

Notes

In this optimization method, the optimization function have to satisfy three conditions written in 1.

References

1

K. M. Nakanishi, K. Fujii, and S. Todo. 2019. Sequential minimal optimization for quantum-classical hybrid algorithms. arXiv preprint arXiv:1903.12166.

Attributes

NFT.bounds_support_level

Returns bounds support level

NFT.gradient_support_level

Returns gradient support level

NFT.initial_point_support_level

Returns initial point support level

NFT.is_bounds_ignored

Returns is bounds ignored

NFT.is_bounds_required

Returns is bounds required

NFT.is_bounds_supported

Returns is bounds supported

NFT.is_gradient_ignored

Returns is gradient ignored

NFT.is_gradient_required

Returns is gradient required

NFT.is_gradient_supported

Returns is gradient supported

NFT.is_initial_point_ignored

Returns is initial point ignored

NFT.is_initial_point_required

Returns is initial point required

NFT.is_initial_point_supported

Returns is initial point supported

NFT.setting

Return setting

Methods

NFT.get_support_level()

return support level dictionary

NFT.gradient_num_diff(x_center, f, epsilon)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

NFT.optimize(num_vars, objective_function[, …])

Perform optimization.

NFT.print_options()

Print algorithm-specific options.

NFT.set_max_evals_grouped(limit)

Set max evals grouped

NFT.set_options(**kwargs)

Sets or updates values in the options dictionary.

NFT.wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.