ESCH

class ESCH(max_evals=1000)[source]

ESCH evolutionary optimizer.

ESCH is an evolutionary algorithm for global optimization that supports bound constraints only. Specifically, it does not support nonlinear constraints.

NLopt global optimizer, derivative-free. For further detail, please refer to

http://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#esch-evolutionary-algorithm

Parameters

max_evals (int) – Maximum allowed number of function evaluations.

Raises

NameError – NLopt library not installed.

Attributes

ESCH.bounds_support_level

Returns bounds support level

ESCH.gradient_support_level

Returns gradient support level

ESCH.initial_point_support_level

Returns initial point support level

ESCH.is_bounds_ignored

Returns is bounds ignored

ESCH.is_bounds_required

Returns is bounds required

ESCH.is_bounds_supported

Returns is bounds supported

ESCH.is_gradient_ignored

Returns is gradient ignored

ESCH.is_gradient_required

Returns is gradient required

ESCH.is_gradient_supported

Returns is gradient supported

ESCH.is_initial_point_ignored

Returns is initial point ignored

ESCH.is_initial_point_required

Returns is initial point required

ESCH.is_initial_point_supported

Returns is initial point supported

ESCH.setting

Return setting

Methods

ESCH.get_nlopt_optimizer()

Return NLopt optimizer type

ESCH.get_support_level()

return support level dictionary

ESCH.gradient_num_diff(x_center, f, epsilon)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

ESCH.optimize(num_vars, objective_function)

Perform optimization.

ESCH.print_options()

Print algorithm-specific options.

ESCH.set_max_evals_grouped(limit)

Set max evals grouped

ESCH.set_options(**kwargs)

Sets or updates values in the options dictionary.

ESCH.wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.