COBYLA¶
- class COBYLA(maxiter=1000, disp=False, rhobeg=1.0, tol=None)[source]¶
Constrained Optimization By Linear Approximation optimizer.
COBYLA is a numerical optimization method for constrained problems where the derivative of the objective function is not known.
Uses scipy.optimize.minimize COBYLA. For further detail, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
- Parameters
maxiter (
int
) – Maximum number of function evaluations.disp (
bool
) – Set to True to print convergence messages.rhobeg (
float
) – Reasonable initial changes to the variables.tol (
Optional
[float
]) – Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region.
Attributes
Returns bounds support level
Returns gradient support level
Returns initial point support level
Returns is bounds ignored
Returns is bounds required
Returns is bounds supported
Returns is gradient ignored
Returns is gradient required
Returns is gradient supported
Returns is initial point ignored
Returns is initial point required
Returns is initial point supported
Return setting
Methods
Return support level dictionary
COBYLA.gradient_num_diff
(x_center, f, epsilon)We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
COBYLA.optimize
(num_vars, objective_function)Perform optimization.
Print algorithm-specific options.
COBYLA.set_max_evals_grouped
(limit)Set max evals grouped
COBYLA.set_options
(**kwargs)Sets or updates values in the options dictionary.
COBYLA.wrap_function
(function, args)Wrap the function to implicitly inject the args at the call of the function.