NumPyDiscriminator¶
- class NumPyDiscriminator(n_features=1, n_out=1)[source]¶
Discriminator based on NumPy
- Parameters
n_features (
int
) – Dimension of input data vector.n_out (
int
) – Dimension of the discriminator’s output vector.
Attributes
Get discriminator
Methods
NumPyDiscriminator.get_label
(x[, detach])Get data sample labels, i.e. true or fake.
NumPyDiscriminator.load_model
(load_dir)Load discriminator model
NumPyDiscriminator.loss
(x, y[, weights])Loss function :param x: sample label (equivalent to discriminator output) :type x: numpy.ndarray :param y: target label :type y: numpy.ndarray :param weights: customized scaling for each sample (optional) :type weights: numpy.ndarray
NumPyDiscriminator.save_model
(snapshot_dir)Save discriminator model
Set seed.
NumPyDiscriminator.train
(data, weights[, …])Perform one training step w.r.t to the discriminator’s parameters