Source code for qiskit.transpiler.passes.optimization.consolidate_blocks

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

# pylint: disable=cell-var-from-loop

"""Replace each block of consecutive gates by a single Unitary node."""

from qiskit.circuit import QuantumRegister, QuantumCircuit
from qiskit.dagcircuit import DAGCircuit
from qiskit.quantum_info.operators import Operator
from qiskit.quantum_info.synthesis import TwoQubitBasisDecomposer
from qiskit.extensions import UnitaryGate, CXGate
from qiskit.transpiler.basepasses import TransformationPass
from qiskit.transpiler.exceptions import TranspilerError


[docs]class ConsolidateBlocks(TransformationPass): """Replace each block of consecutive gates by a single Unitary node. Pass to consolidate sequences of uninterrupted gates acting on the same qubits into a Unitary node, to be resynthesized later, to a potentially more optimal subcircuit. Notes: This pass assumes that the 'blocks_list' property that it reads is given such that blocks are in topological order. The blocks are collected by a previous pass, such as `Collect2qBlocks`. """ def __init__(self, kak_basis_gate=CXGate(), force_consolidate=False): """ConsolidateBlocks initializer. Args: kak_basis_gate (Gate): Basis gate for KAK decomposition. force_consolidate (bool): Force block consolidation """ super().__init__() self.force_consolidate = force_consolidate self.decomposer = TwoQubitBasisDecomposer(kak_basis_gate)
[docs] def run(self, dag): """Run the ConsolidateBlocks pass on `dag`. Iterate over each block and replace it with an equivalent Unitary on the same wires. """ new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) # compute ordered indices for the global circuit wires global_index_map = {wire: idx for idx, wire in enumerate(dag.qubits)} blocks = self.property_set['block_list'] # just to make checking if a node is in any block easier all_block_nodes = {nd for bl in blocks for nd in bl} for node in dag.topological_op_nodes(): if node not in all_block_nodes: # need to add this node to find out where in the list it goes preds = [nd for nd in dag.predecessors(node) if nd.type == 'op'] block_count = 0 while preds: if block_count < len(blocks): block = blocks[block_count] # if any of the predecessors are in the block, remove them preds = [p for p in preds if p not in block] else: # should never occur as this would mean not all # nodes before this one topologically had been added # so not all predecessors were removed raise TranspilerError("Not all predecessors removed due to error" " in topological order") block_count += 1 # we have now seen all predecessors # so update the blocks list to include this block blocks = blocks[:block_count] + [[node]] + blocks[block_count:] # create the dag from the updated list of blocks basis_gate_name = self.decomposer.gate.name for block in blocks: if len(block) == 1 and block[0].name != 'cx': # an intermediate node that was added into the overall list new_dag.apply_operation_back(block[0].op, block[0].qargs, block[0].cargs, block[0].condition) else: # find the qubits involved in this block block_qargs = set() for nd in block: block_qargs |= set(nd.qargs) # convert block to a sub-circuit, then simulate unitary and add block_width = len(block_qargs) q = QuantumRegister(block_width) subcirc = QuantumCircuit(q) block_index_map = self._block_qargs_to_indices(block_qargs, global_index_map) basis_count = 0 for nd in block: if nd.op.name == basis_gate_name: basis_count += 1 subcirc.append(nd.op, [q[block_index_map[i]] for i in nd.qargs]) unitary = UnitaryGate(Operator(subcirc)) # simulates the circuit if self.force_consolidate or unitary.num_qubits > 2 or \ self.decomposer.num_basis_gates(unitary) != basis_count: new_dag.apply_operation_back( unitary, sorted(block_qargs, key=lambda x: block_index_map[x])) else: for nd in block: new_dag.apply_operation_back(nd.op, nd.qargs, nd.cargs, nd.condition) return new_dag
def _block_qargs_to_indices(self, block_qargs, global_index_map): """Map each qubit in block_qargs to its wire position among the block's wires. Args: block_qargs (list): list of qubits that a block acts on global_index_map (dict): mapping from each qubit in the circuit to its wire position within that circuit Returns: dict: mapping from qarg to position in block """ block_indices = [global_index_map[q] for q in block_qargs] ordered_block_indices = sorted(block_indices) block_positions = {q: ordered_block_indices.index(global_index_map[q]) for q in block_qargs} return block_positions