# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Symplectic Stabilizer Table Class
"""
# pylint: disable=invalid-name, abstract-method
import numpy as np
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.custom_iterator import CustomIterator
from qiskit.quantum_info.operators.symplectic.pauli_table import PauliTable
[docs]class StabilizerTable(PauliTable):
r"""Symplectic representation of a list Stabilizer matrices.
**Symplectic Representation**
The symplectic representation of a single-qubit Stabilizer matrix
is a pair of boolean values :math:`[x, z]` and a boolean phase `p`
such that the Stabilizer matrix is given by
:math:`S = (-1)^p \sigma_z^z.\sigma_x^x`.
The correspondence between labels, symplectic representation,
stabilizer matrices, and Pauli matrices for the single-qubit case is
shown in the following table.
.. list-table:: Table 1: Stabilizer Representations
:header-rows: 1
* - Label
- Phase
- Symplectic
- Matrix
- Pauli
* - ``"+I"``
- 0
- :math:`[0, 0]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}`
- :math:`I`
* - ``"-I"``
- 1
- :math:`[0, 0]`
- :math:`\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}`
- :math:`-I`
* - ``"X"``
- 0
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}`
- :math:`X`
* - ``"-X"``
- 1
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}`
- :math:`-X`
* - ``"Y"``
- 0
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}`
- :math:`iY`
* - ``"-Y"``
- 1
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}`
- :math:`-iY`
* - ``"Z"``
- 0
- :math:`[0, 1]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}`
- :math:`Z`
* - ``"-Z"``
- 1
- :math:`[0, 1]`
- :math:`\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}`
- :math:`-Z`
Internally this is stored as a length `N` boolean phase vector
:math:`[p_{N-1}, ..., p_{0}]` and a :class:`PauliTable`
:math:`M \times 2N` boolean matrix:
.. math::
\left(\begin{array}{ccc|ccc}
x_{0,0} & ... & x_{0,N-1} & z_{0,0} & ... & z_{0,N-1} \\
x_{1,0} & ... & x_{1,N-1} & z_{1,0} & ... & z_{1,N-1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
x_{M-1,0} & ... & x_{M-1,N-1} & z_{M-1,0} & ... & z_{M-1,N-1}
\end{array}\right)
where each row is a block vector :math:`[X_i, Z_i]` with
:math:`X_i = [x_{i,0}, ..., x_{i,N-1}]`, :math:`Z_i = [z_{i,0}, ..., z_{i,N-1}]`
is the symplectic representation of an `N`-qubit Pauli.
This representation is based on reference [1].
StabilizerTable's can be created from a list of labels using :meth:`from_labels`,
and converted to a list of labels or a list of matrices using
:meth:`to_labels` and :meth:`to_matrix` respectively.
**Group Product**
The product of the stabilizer elements is defined with respect to the
matrix multiplication of the matrices in Table 1. In terms of
stabilizes labels the dot product group structure is
+-------+----+----+----+----+
| A.B | I | X | Y | Z |
+=======+====+====+====+====+
| **I** | I | X | Y | Z |
+-------+----+----+----+----+
| **X** | X | I | -Z | Y |
+-------+----+----+----+----+
| **Y** | Y | Z | -I | -X |
+-------+----+----+----+----+
| **Z** | Z | -Y | X | I |
+-------+----+----+----+----+
The :meth:`dot` method will return the output for
:code:`row.dot(col) = row.col`, while the :meth:`compose` will return
:code:`row.compose(col) = col.row` from the above table.
Note that while this dot product is different to the matrix product
of the :class:`PauliTable`, it does not change the commutation structure
of elements. Hence :meth:`commutes:` will be the same for the same
labels.
**Qubit Ordering**
The qubits are ordered in the table such the least significant qubit
`[x_{i, 0}, z_{i, 0}]` is the first element of each of the :math:`X_i, Z_i`
vector blocks. This is the opposite order to position in string labels or
matrix tensor products where the least significant qubit is the right-most
string character. For example Pauli ``"ZX"`` has ``"X"`` on qubit-0
and ``"Z"`` on qubit 1, and would have symplectic vectors :math:`x=[1, 0]`,
:math:`z=[0, 1]`.
**Data Access**
Subsets of rows can be accessed using the list access ``[]`` operator and
will return a table view of part of the StabilizerTable. The underlying
phase vector and Pauli array can be directly accessed using the :attr:`phase`
and :attr:`array` properties respectively. The sub-arrays for only the
`X` or `Z` blocks can be accessed using the :attr:`X` and :attr:`Z`
properties respectively.
The Pauli part of the Stabilizer table can be viewed and accessed as a
:class:`PauliTable` object using the :attr:`pauli` property. Note that this
doesn't copy the underlying array so any changes made to the Pauli table
will also change the stabilizer table.
**Iteration**
Rows in the Stabilizer table can be iterated over like a list. Iteration can
also be done using the label or matrix representation of each row using the
:meth:`label_iter` and :meth:`matrix_iter` methods.
References:
1. S. Aaronson, D. Gottesman, *Improved Simulation of Stabilizer Circuits*,
Phys. Rev. A 70, 052328 (2004).
`arXiv:quant-ph/0406196 <https://arxiv.org/abs/quant-ph/0406196>`_
"""
def __init__(self, data, phase=None):
"""Initialize the StabilizerTable.
Args:
data (array or str or PauliTable): input PauliTable data.
phase (array or bool or None): optional phase vector for input data
(Default: None).
Raises:
QiskitError: if input array or phase vector has an invalid shape.
Additional Information:
The input array is not copied so multiple Pauli and Stabilizer tables
can share the same underlying array.
"""
if isinstance(data, str) and phase is None:
pauli, phase = StabilizerTable._from_label(data)
elif isinstance(data, StabilizerTable):
pauli = data._array
if phase is None:
phase = data._phase
else:
pauli = data
# Initialize the Pauli table
super().__init__(pauli)
# Initialize the phase vector
if phase is None or phase is False:
self._phase = np.zeros(self.size, dtype=np.bool)
elif phase is True:
self._phase = np.ones(self.size, dtype=np.bool)
else:
self._phase = np.asarray(phase, dtype=np.bool)
if self._phase.shape != (self.size, ):
raise QiskitError("Phase vector is incorrect shape.")
def __repr__(self):
return 'StabilizerTable(\n{},\nphase={})'.format(
repr(self._array), repr(self._phase))
def __str__(self):
"""String representation"""
return 'StabilizerTable: {}'.format(self.to_labels())
def __eq__(self, other):
"""Test if two StabilizerTables are equal"""
if isinstance(other, StabilizerTable):
return np.all(self._phase == other._phase) and self.pauli == other.pauli
return False
[docs] def copy(self):
"""Return a copy of the StabilizerTable."""
return StabilizerTable(self._array.copy(),
self._phase.copy())
# ---------------------------------------------------------------------
# PauliTable and phase access
# ---------------------------------------------------------------------
@property
def pauli(self):
"""Return PauliTable"""
return PauliTable(self._array)
@pauli.setter
def pauli(self, value):
if not isinstance(value, PauliTable):
value = PauliTable(value)
self._array[:, :] = value._array
@property
def phase(self):
"""Return phase vector"""
return self._phase
@phase.setter
def phase(self, value):
self._phase[:] = value
# ---------------------------------------------------------------------
# Array methods
# ---------------------------------------------------------------------
[docs] def __getitem__(self, key):
"""Return a view of StabilizerTable"""
if isinstance(key, int):
key = [key]
return StabilizerTable(self._array[key], self._phase[key])
def __setitem__(self, key, value):
"""Update StabilizerTable"""
if not isinstance(value, StabilizerTable):
value = StabilizerTable(value)
self._array[key] = value.array
self._phase[key] = value.phase
[docs] def delete(self, ind, qubit=False):
"""Return a copy with Stabilizer rows deleted from table.
When deleting qubit columns, qubit-0 is the right-most
(largest index) column, and qubit-(N-1) is the left-most
(0 index) column of the underlying :attr:`X` and :attr:`Z`
arrays.
Args:
ind (int or list): index(es) to delete.
qubit (bool): if True delete qubit columns, otherwise delete
Stabilizer rows (Default: False).
Returns:
StabilizerTable: the resulting table with the entries removed.
Raises:
QiskitError: if ind is out of bounds for the array size or
number of qubits.
"""
if qubit:
# When deleting qubit columns we don't need to modify
# the phase vector
table = super().delete(ind, True)
return StabilizerTable(table, self._phase)
if isinstance(ind, int):
ind = [ind]
if max(ind) >= self.size:
raise QiskitError("Indices {} are not all less than the size"
" of the SatbilizerTable ({})".format(ind, self.size))
return StabilizerTable(np.delete(self._array, ind, axis=0),
np.delete(self._phase, ind, axis=0))
[docs] def insert(self, ind, value, qubit=False):
"""Insert stabilizers's into the table.
When inserting qubit columns, qubit-0 is the right-most
(largest index) column, and qubit-(N-1) is the left-most
(0 index) column of the underlying :attr:`X` and :attr:`Z`
arrays.
Args:
ind (int): index to insert at.
value (StabilizerTable): values to insert.
qubit (bool): if True delete qubit columns, otherwise delete
Pauli rows (Default: False).
Returns:
StabilizerTable: the resulting table with the entries inserted.
Raises:
QiskitError: if the insertion index is invalid.
"""
if not isinstance(ind, int):
raise QiskitError("Insert index must be an integer.")
if not isinstance(value, StabilizerTable):
value = StabilizerTable(value)
# Update PauliTable component
table = super().insert(ind, value, qubit=qubit)
# Update phase vector
if not qubit:
phase = np.insert(self._phase, ind, value._phase, axis=0)
else:
phase = np.logical_xor(self._phase, value._phase)
return StabilizerTable(table, phase)
[docs] def argsort(self, weight=False):
"""Return indices for sorting the rows of the PauliTable.
The default sort method is lexicographic sorting of Paulis by
qubit number. By using the `weight` kwarg the output can additionally
be sorted by the number of non-identity terms in the Stabilizer,
where the set of all Pauli's of a given weight are still ordered
lexicographically.
This does not sort based on phase values. It will preserve the
original order of rows with the same Pauli's but different phases.
Args:
weight (bool): optionally sort by weight if True (Default: False).
Returns:
array: the indices for sorting the table.
"""
return super().argsort(weight=weight)
[docs] def sort(self, weight=False):
"""Sort the rows of the table.
The default sort method is lexicographic sorting by qubit number.
By using the `weight` kwarg the output can additionally be sorted
by the number of non-identity terms in the Pauli, where the set of
all Pauli's of a given weight are still ordered lexicographically.
This does not sort based on phase values. It will preserve the
original order of rows with the same Pauli's but different phases.
Consider sorting all a random ordering of all 2-qubit Paulis
.. jupyter-execute::
from numpy.random import shuffle
from qiskit.quantum_info.operators import StabilizerTable
# 2-qubit labels
labels = ['+II', '+IX', '+IY', '+IZ', '+XI', '+XX', '+XY', '+XZ',
'+YI', '+YX', '+YY', '+YZ', '+ZI', '+ZX', '+ZY', '+ZZ',
'-II', '-IX', '-IY', '-IZ', '-XI', '-XX', '-XY', '-XZ',
'-YI', '-YX', '-YY', '-YZ', '-ZI', '-ZX', '-ZY', '-ZZ']
# Shuffle Labels
shuffle(labels)
st = StabilizerTable.from_labels(labels)
print('Initial Ordering')
print(st)
# Lexicographic Ordering
srt = st.sort()
print('Lexicographically sorted')
print(srt)
# Weight Ordering
srt = st.sort(weight=True)
print('Weight sorted')
print(srt)
Args:
weight (bool): optionally sort by weight if True (Default: False).
Returns:
StabilizerTable: a sorted copy of the original table.
"""
return super().sort(weight=weight)
[docs] def unique(self, return_index=False, return_counts=False):
"""Return unique stabilizers from the table.
**Example**
.. jupyter-execute::
from qiskit.quantum_info.operators import StabilizerTable
st = StabilizerTable.from_labels(['+X', '+I', '-I', '-X', '+X', '-X', '+I'])
unique = st.unique()
print(unique)
Args:
return_index (bool): If True, also return the indices that
result in the unique array.
(Default: False)
return_counts (bool): If True, also return the number of times
each unique item appears in the table.
Returns:
StabilizerTable: unique
the table of the unique rows.
unique_indices: np.ndarray, optional
The indices of the first occurrences of the unique values in
the original array. Only provided if ``return_index`` is True.\
unique_counts: np.array, optional
The number of times each of the unique values comes up in the
original array. Only provided if ``return_counts`` is True.
"""
# Combine array and phases into single array for sorting
stack = np.hstack([self._array,
self._phase.reshape((self.size, 1))])
if return_counts:
_, index, counts = np.unique(stack, return_index=True,
return_counts=True, axis=0)
else:
_, index = np.unique(stack, return_index=True, axis=0)
# Sort the index so we return unique rows in the original array order
sort_inds = index.argsort()
index = index[sort_inds]
unique = self[index]
# Concatenate return tuples
ret = (unique, )
if return_index:
ret += (index, )
if return_counts:
ret += (counts[sort_inds], )
if len(ret) == 1:
return ret[0]
return ret
# ---------------------------------------------------------------------
# Utility methods
# ---------------------------------------------------------------------
[docs] def tensor(self, other):
"""Return the tensor output product of two tables.
This returns the combination of the tensor product of all
stabilizers in the `current` table with all stabilizers in the
`other` table. The `other` tables qubits will be the
least-significant in the returned table. This is the opposite
tensor order to :meth:`tensor`.
**Example**
.. jupyter-execute::
from qiskit.quantum_info.operators import StabilizerTable
current = StabilizerTable.from_labels(['+I', '-X'])
other = StabilizerTable.from_labels(['-Y', '+Z'])
print(current.tensor(other))
Args:
other (StabilizerTable): another StabilizerTable.
Returns:
StabilizerTable: the tensor outer product table.
Raises:
QiskitError: if other cannot be converted to a StabilizerTable.
"""
if not isinstance(other, StabilizerTable):
other = StabilizerTable(other)
pauli = super().tensor(other)
phase1, phase2 = self._block_stack(self.phase, other.phase)
phase = np.logical_xor(phase1, phase2)
return StabilizerTable(pauli, phase)
[docs] def expand(self, other):
"""Return the expand output product of two tables.
This returns the combination of the tensor product of all
stabilizers in the `other` table with all stabilizers in the
`current` table. The `current` tables qubits will be the
least-significant in the returned table. This is the opposite
tensor order to :meth:`tensor`.
**Example**
.. jupyter-execute::
from qiskit.quantum_info.operators import StabilizerTable
current = StabilizerTable.from_labels(['+I', '-X'])
other = StabilizerTable.from_labels(['-Y', '+Z'])
print(current.expand(other))
Args:
other (StabilizerTable): another StabilizerTable.
Returns:
StabilizerTable: the expand outer product table.
Raises:
QiskitError: if other cannot be converted to a StabilizerTable.
"""
if not isinstance(other, StabilizerTable):
other = StabilizerTable(other)
pauli = super().expand(other)
phase1, phase2 = self._block_stack(self.phase, other.phase)
phase = np.logical_xor(phase1, phase2)
return StabilizerTable(pauli, phase)
[docs] def compose(self, other, qargs=None, front=False):
"""Return the compose output product of two tables.
This returns the combination of the compose product of all
stabilizers in the current table with all stabilizers in the
other table.
The individual stabilizer compose product is given by
+----------------------+----+----+----+----+
| :code:`A.compose(B)` | I | X | Y | Z |
+======================+====+====+====+====+
| **I** | I | X | Y | Z |
+----------------------+----+----+----+----+
| **X** | X | I | Z | -Y |
+----------------------+----+----+----+----+
| **Y** | Y | -Z | -I | X |
+----------------------+----+----+----+----+
| **Z** | Z | Y | -X | I |
+----------------------+----+----+----+----+
If `front=True` the composition will be given by the
:meth:`dot` method.
**Example**
.. jupyter-execute::
from qiskit.quantum_info.operators import StabilizerTable
current = StabilizerTable.from_labels(['+I', '-X'])
other = StabilizerTable.from_labels(['+X', '-Z'])
print(current.compose(other))
Args:
other (StabilizerTable): another StabilizerTable.
qargs (None or list): qubits to apply compose product on
(Default: None).
front (bool): If True use `dot` composition method
(default: False).
Returns:
StabilizerTable: the compose outer product table.
Raises:
QiskitError: if other cannot be converted to a StabilizerTable.
"""
if not isinstance(other, StabilizerTable):
other = StabilizerTable(other)
if qargs is None and other.num_qubits != self.num_qubits:
raise QiskitError("other StabilizerTable must be on the same number of qubits.")
if qargs and other.num_qubits != len(qargs):
raise QiskitError("Number of qubits in the other StabilizerTable does not match qargs.")
# Stack X and Z blocks for output size
x1, x2 = self._block_stack(self.X, other.X)
z1, z2 = self._block_stack(self.Z, other.Z)
phase1, phase2 = self._block_stack(self.phase, other.phase)
if qargs is not None:
ret_x, ret_z = x1.copy(), z1.copy()
x1 = x1[:, qargs]
z1 = z1[:, qargs]
ret_x[:, qargs] = x1 ^ x2
ret_z[:, qargs] = z1 ^ z2
pauli = np.hstack([ret_x, ret_z])
else:
pauli = np.hstack((x1 ^ x2, z1 ^ z2))
# We pick up a minus sign for products:
# Y.Y = -I, X.Y = -Z, Y.Z = -X, Z.X = -Y
if front:
minus = (x1 & z2 & (x2 | z1)) | (~x1 & x2 & z1 & ~z2)
else:
minus = (x2 & z1 & (x1 | z2)) | (~x2 & x1 & z2 & ~z1)
phase_shift = np.array(np.sum(minus, axis=1) % 2, dtype=np.bool)
phase = phase_shift ^ phase1 ^ phase2
return StabilizerTable(pauli, phase)
[docs] def dot(self, other, qargs=None):
"""Return the dot output product of two tables.
This returns the combination of the compose product of all
stabilizers in the current table with all stabilizers in the
other table.
The individual stabilizer dot product is given by
+------------------+----+----+----+----+
| :code:`A.dot(B)` | I | X | Y | Z |
+==================+====+====+====+====+
| **I** | I | X | Y | Z |
+------------------+----+----+----+----+
| **X** | X | I | -Z | Y |
+------------------+----+----+----+----+
| **Y** | Y | Z | -I | -X |
+------------------+----+----+----+----+
| **Z** | Z | -Y | X | I |
+------------------+----+----+----+----+
**Example**
.. jupyter-execute::
from qiskit.quantum_info.operators import StabilizerTable
current = StabilizerTable.from_labels(['+I', '-X'])
other = StabilizerTable.from_labels(['+X', '-Z'])
print(current.dot(other))
Args:
other (StabilizerTable): another StabilizerTable.
qargs (None or list): qubits to apply dot product on
(Default: None).
Returns:
StabilizerTable: the dot outer product table.
Raises:
QiskitError: if other cannot be converted to a StabilizerTable.
"""
return super().dot(other, qargs=qargs)
def _add(self, other, qargs=None):
"""Append with another StabilizerTable.
If ``qargs`` are specified the other operator will be added
assuming it is identity on all other subsystems.
Args:
other (StabilizerTable): another table.
qargs (None or list): optional subsystems to add on
(Default: None)
Returns:
StabilizerTable: the concatinated table self + other.
"""
if qargs is None:
qargs = getattr(other, 'qargs', None)
if not isinstance(other, StabilizerTable):
other = StabilizerTable(other)
self._validate_add_dims(other, qargs)
if qargs is None or (sorted(qargs) == qargs
and len(qargs) == self.num_qubits):
return StabilizerTable(np.vstack((self._array, other._array)),
np.hstack((self._phase, other._phase)))
# Pad other with identity and then add
padded = StabilizerTable(
np.zeros((1, 2 * self.num_qubits), dtype=np.bool))
padded = padded.compose(other, qargs=qargs)
return StabilizerTable(
np.vstack((self._array, padded._array)),
np.hstack((self._phase, padded._phase)))
def _multiply(self, other):
"""Multiply (XOR) phase vector of the StabilizerTable.
This updates the phase vector of the table. Allowed values for
multiplication are ``False``, ``True``, 1 or -1. Multiplying by
-1 or ``False`` is equivalent. As is multiplying by 1 or ``True``.
Args:
other (bool or int): a Boolean value.
Returns:
StabilizerTable: the updated stabilizer table.
Raises:
QiskitError: if other is not in (False, True, 1, -1).
"""
# Numeric (integer) value case
if not isinstance(other, (bool, np.bool)) and other not in [1, -1]:
raise QiskitError(
"Can only multiply a Stabilizer value by +1 or -1 phase.")
# We have to be careful we don't cast True <-> +1 when
# we store -1 phase as boolen True value
if (isinstance(other, (bool, np.bool)) and other) or other == -1:
ret = self.copy()
ret._phase ^= True
return ret
return self
# ---------------------------------------------------------------------
# Representation conversions
# ---------------------------------------------------------------------
[docs] @classmethod
def from_labels(cls, labels):
r"""Construct a StabilizerTable from a list of Pauli stabilizer strings.
Pauli Stabilizer string labels are Pauli strings with an optional
``"+"`` or ``"-"`` character. If there is no +/-sign a + phase is
used by default.
.. list-table:: Stabilizer Representations
:header-rows: 1
* - Label
- Phase
- Symplectic
- Matrix
- Pauli
* - ``"+I"``
- 0
- :math:`[0, 0]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}`
- :math:`I`
* - ``"-I"``
- 1
- :math:`[0, 0]`
- :math:`\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}`
- :math:`-I`
* - ``"X"``
- 0
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}`
- :math:`X`
* - ``"-X"``
- 1
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}`
- :math:`-X`
* - ``"Y"``
- 0
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}`
- :math:`iY`
* - ``"-Y"``
- 1
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}`
- :math:`-iY`
* - ``"Z"``
- 0
- :math:`[0, 1]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}`
- :math:`Z`
* - ``"-Z"``
- 1
- :math:`[0, 1]`
- :math:`\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}`
- :math:`-Z`
Args:
labels (list): Pauli stabilizer string label(es).
Returns:
StabilizerTable: the constructed StabilizerTable.
Raises:
QiskitError: If the input list is empty or contains invalid
Pauli stabilizer strings.
"""
if isinstance(labels, str):
labels = [labels]
n_paulis = len(labels)
if n_paulis == 0:
raise QiskitError("Input Pauli list is empty.")
# Get size from first Pauli
pauli, phase = cls._from_label(labels[0])
table = np.zeros((n_paulis, len(pauli)), dtype=np.bool)
phases = np.zeros(n_paulis, dtype=np.bool)
table[0], phases[0] = pauli, phase
for i in range(1, n_paulis):
table[i], phases[i] = cls._from_label(labels[i])
return cls(table, phases)
[docs] def to_labels(self, array=False):
r"""Convert a StabilizerTable to a list Pauli stabilizer string labels.
For large StabilizerTables converting using the ``array=True``
kwarg will be more efficient since it allocates memory for
the full Numpy array of labels in advance.
.. list-table:: Stabilizer Representations
:header-rows: 1
* - Label
- Phase
- Symplectic
- Matrix
- Pauli
* - ``"+I"``
- 0
- :math:`[0, 0]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}`
- :math:`I`
* - ``"-I"``
- 1
- :math:`[0, 0]`
- :math:`\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}`
- :math:`-I`
* - ``"X"``
- 0
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}`
- :math:`X`
* - ``"-X"``
- 1
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}`
- :math:`-X`
* - ``"Y"``
- 0
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}`
- :math:`iY`
* - ``"-Y"``
- 1
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}`
- :math:`-iY`
* - ``"Z"``
- 0
- :math:`[0, 1]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}`
- :math:`Z`
* - ``"-Z"``
- 1
- :math:`[0, 1]`
- :math:`\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}`
- :math:`-Z`
Args:
array (bool): return a Numpy array if True, otherwise
return a list (Default: False).
Returns:
list or array: The rows of the StabilizerTable in label form.
"""
ret = np.zeros(self.size, dtype='<U{}'.format(1 + self._num_qubits))
for i in range(self.size):
ret[i] = self._to_label(self._array[i], self._phase[i])
if array:
return ret
return ret.tolist()
[docs] def to_matrix(self, sparse=False, array=False):
r"""Convert to a list or array of Stabilizer matrices.
For large StabilizerTables converting using the ``array=True``
kwarg will be more efficient since it allocates memory for the full
rank-3 Numpy array of matrices in advance.
.. list-table:: Stabilizer Representations
:header-rows: 1
* - Label
- Phase
- Symplectic
- Matrix
- Pauli
* - ``"+I"``
- 0
- :math:`[0, 0]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}`
- :math:`I`
* - ``"-I"``
- 1
- :math:`[0, 0]`
- :math:`\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}`
- :math:`-I`
* - ``"X"``
- 0
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}`
- :math:`X`
* - ``"-X"``
- 1
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}`
- :math:`-X`
* - ``"Y"``
- 0
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}`
- :math:`iY`
* - ``"-Y"``
- 1
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}`
- :math:`-iY`
* - ``"Z"``
- 0
- :math:`[0, 1]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}`
- :math:`Z`
* - ``"-Z"``
- 1
- :math:`[0, 1]`
- :math:`\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}`
- :math:`-Z`
Args:
sparse (bool): if True return sparse CSR matrices, otherwise
return dense Numpy arrays (Default: False).
array (bool): return as rank-3 numpy array if True, otherwise
return a list of Numpy arrays (Default: False).
Returns:
list: A list of dense Pauli matrices if `array=False` and `sparse=False`.
list: A list of sparse Pauli matrices if `array=False` and `sparse=True`.
array: A dense rank-3 array of Pauli matrices if `array=True`.
"""
if not array:
# We return a list of Numpy array matrices
return [self._to_matrix(pauli, phase, sparse=sparse) for
pauli, phase in zip(self._array, self._phase)]
# For efficiency we also allow returning a single rank-3
# array where first index is the Pauli row, and second two
# indices are the matrix indices
dim = 2 ** self.num_qubits
ret = np.zeros((self.size, dim, dim), dtype=float)
for i in range(self.size):
ret[i] = self._to_matrix(self._array[i], self._phase[i])
return ret
@staticmethod
def _from_label(label):
"""Return the symplectic representation of a Pauli stabilizer string"""
# Check if first character is '+' or '-'
phase = False
if label[0] in ['-', '+']:
phase = (label[0] == '-')
label = label[1:]
return PauliTable._from_label(label), phase
@staticmethod
def _to_label(pauli, phase):
"""Return the Pauli stabilizer string from symplectic representation."""
# pylint: disable=arguments-differ
# Cast in symplectic representation
# This should avoid a copy if the pauli is already a row
# in the symplectic table
label = PauliTable._to_label(pauli)
if phase:
return '-' + label
return '+' + label
@staticmethod
def _to_matrix(pauli, phase, sparse=False):
""""Return the Pauli stabilizer matrix from symplectic representation.
Args:
pauli (array): symplectic Pauli vector.
phase (bool): the phase value for the Pauli.
sparse (bool): if True return a sparse CSR matrix, otherwise
return a dense Numpy array (Default: False).
Returns:
array: if sparse=False.
csr_matrix: if sparse=True.
"""
# pylint: disable=arguments-differ
mat = PauliTable._to_matrix(pauli, sparse=sparse, real_valued=True)
if phase:
mat *= -1
return mat
# ---------------------------------------------------------------------
# Custom Iterators
# ---------------------------------------------------------------------
[docs] def label_iter(self):
"""Return a label representation iterator.
This is a lazy iterator that converts each row into the string
label only as it is used. To convert the entire table to labels use
the :meth:`to_labels` method.
Returns:
LabelIterator: label iterator object for the StabilizerTable.
"""
class LabelIterator(CustomIterator):
"""Label representation iteration and item access."""
def __repr__(self):
return "<StabilizerTable_label_iterator at {}>".format(hex(id(self)))
def __getitem__(self, key):
return self.obj._to_label(self.obj.array[key],
self.obj.phase[key])
return LabelIterator(self)
[docs] def matrix_iter(self, sparse=False):
"""Return a matrix representation iterator.
This is a lazy iterator that converts each row into the Pauli matrix
representation only as it is used. To convert the entire table to
matrices use the :meth:`to_matrix` method.
Args:
sparse (bool): optionally return sparse CSR matrices if True,
otherwise return Numpy array matrices
(Default: False)
Returns:
MatrixIterator: matrix iterator object for the StabilizerTable.
"""
class MatrixIterator(CustomIterator):
"""Matrix representation iteration and item access."""
def __repr__(self):
return "<StabilizerTable_matrix_iterator at {}>".format(hex(id(self)))
def __getitem__(self, key):
return self.obj._to_matrix(self.obj.array[key],
self.obj.phase[key],
sparse=sparse)
return MatrixIterator(self)