Source code for qiskit.providers.basicaer.qasm_simulator

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

# pylint: disable=arguments-differ

"""Contains a (slow) Python simulator.

It simulates a qasm quantum circuit (an experiment) that has been compiled
to run on the simulator. It is exponential in the number of qubits.

The simulator is run using

.. code-block:: python

    QasmSimulatorPy().run(qobj)

Where the input is a Qobj object and the output is a BasicAerJob object, which can
later be queried for the Result object. The result will contain a 'memory' data
field, which is a result of measurements for each shot.
"""

import uuid
import time
import logging

from math import log2
from collections import Counter
import numpy as np

from qiskit.util import local_hardware_info
from qiskit.providers.models import QasmBackendConfiguration
from qiskit.result import Result
from qiskit.providers import BaseBackend
from qiskit.providers.basicaer.basicaerjob import BasicAerJob
from .exceptions import BasicAerError
from .basicaertools import single_gate_matrix
from .basicaertools import cx_gate_matrix
from .basicaertools import einsum_vecmul_index

logger = logging.getLogger(__name__)


[docs]class QasmSimulatorPy(BaseBackend): """Python implementation of a qasm simulator.""" MAX_QUBITS_MEMORY = int(log2(local_hardware_info()['memory'] * (1024 ** 3) / 16)) DEFAULT_CONFIGURATION = { 'backend_name': 'qasm_simulator', 'backend_version': '2.0.0', 'n_qubits': min(24, MAX_QUBITS_MEMORY), 'url': 'https://github.com/Qiskit/qiskit-terra', 'simulator': True, 'local': True, 'conditional': True, 'open_pulse': False, 'memory': True, 'max_shots': 65536, 'coupling_map': None, 'description': 'A python simulator for qasm experiments', 'basis_gates': ['u1', 'u2', 'u3', 'cx', 'id', 'unitary'], 'gates': [ { 'name': 'u1', 'parameters': ['lambda'], 'qasm_def': 'gate u1(lambda) q { U(0,0,lambda) q; }' }, { 'name': 'u2', 'parameters': ['phi', 'lambda'], 'qasm_def': 'gate u2(phi,lambda) q { U(pi/2,phi,lambda) q; }' }, { 'name': 'u3', 'parameters': ['theta', 'phi', 'lambda'], 'qasm_def': 'gate u3(theta,phi,lambda) q { U(theta,phi,lambda) q; }' }, { 'name': 'cx', 'parameters': ['c', 't'], 'qasm_def': 'gate cx c,t { CX c,t; }' }, { 'name': 'id', 'parameters': ['a'], 'qasm_def': 'gate id a { U(0,0,0) a; }' }, { 'name': 'unitary', 'parameters': ['matrix'], 'qasm_def': 'unitary(matrix) q1, q2,...' } ] } DEFAULT_OPTIONS = { "initial_statevector": None, "chop_threshold": 1e-15 } # Class level variable to return the final state at the end of simulation # This should be set to True for the statevector simulator SHOW_FINAL_STATE = False def __init__(self, configuration=None, provider=None): super().__init__(configuration=( configuration or QasmBackendConfiguration.from_dict(self.DEFAULT_CONFIGURATION)), provider=provider) # Define attributes in __init__. self._local_random = np.random.RandomState() self._classical_memory = 0 self._classical_register = 0 self._statevector = 0 self._number_of_cmembits = 0 self._number_of_qubits = 0 self._shots = 0 self._memory = False self._initial_statevector = self.DEFAULT_OPTIONS["initial_statevector"] self._chop_threshold = self.DEFAULT_OPTIONS["chop_threshold"] self._qobj_config = None # TEMP self._sample_measure = False def _add_unitary(self, gate, qubits): """Apply an N-qubit unitary matrix. Args: gate (matrix_like): an N-qubit unitary matrix qubits (list): the list of N-qubits. """ # Get the number of qubits num_qubits = len(qubits) # Compute einsum index string for 1-qubit matrix multiplication indexes = einsum_vecmul_index(qubits, self._number_of_qubits) # Convert to complex rank-2N tensor gate_tensor = np.reshape(np.array(gate, dtype=complex), num_qubits * [2, 2]) # Apply matrix multiplication self._statevector = np.einsum(indexes, gate_tensor, self._statevector, dtype=complex, casting='no') def _get_measure_outcome(self, qubit): """Simulate the outcome of measurement of a qubit. Args: qubit (int): the qubit to measure Return: tuple: pair (outcome, probability) where outcome is '0' or '1' and probability is the probability of the returned outcome. """ # Axis for numpy.sum to compute probabilities axis = list(range(self._number_of_qubits)) axis.remove(self._number_of_qubits - 1 - qubit) probabilities = np.sum(np.abs(self._statevector) ** 2, axis=tuple(axis)) # Compute einsum index string for 1-qubit matrix multiplication random_number = self._local_random.rand() if random_number < probabilities[0]: return '0', probabilities[0] # Else outcome was '1' return '1', probabilities[1] def _add_sample_measure(self, measure_params, num_samples): """Generate memory samples from current statevector. Args: measure_params (list): List of (qubit, cmembit) values for measure instructions to sample. num_samples (int): The number of memory samples to generate. Returns: list: A list of memory values in hex format. """ # Get unique qubits that are actually measured and sort in # ascending order measured_qubits = sorted(list({qubit for qubit, cmembit in measure_params})) num_measured = len(measured_qubits) # We use the axis kwarg for numpy.sum to compute probabilities # this sums over all non-measured qubits to return a vector # of measure probabilities for the measured qubits axis = list(range(self._number_of_qubits)) for qubit in reversed(measured_qubits): # Remove from largest qubit to smallest so list position is correct # with respect to position from end of the list axis.remove(self._number_of_qubits - 1 - qubit) probabilities = np.reshape(np.sum(np.abs(self._statevector) ** 2, axis=tuple(axis)), 2 ** num_measured) # Generate samples on measured qubits as ints with qubit # position in the bit-string for each int given by the qubit # position in the sorted measured_qubits list samples = self._local_random.choice(range(2 ** num_measured), num_samples, p=probabilities) # Convert the ints to bitstrings memory = [] for sample in samples: classical_memory = self._classical_memory for qubit, cmembit in measure_params: pos = measured_qubits.index(qubit) qubit_outcome = int((sample & (1 << pos)) >> pos) membit = 1 << cmembit classical_memory = (classical_memory & (~membit)) | (qubit_outcome << cmembit) value = bin(classical_memory)[2:] memory.append(hex(int(value, 2))) return memory def _add_qasm_measure(self, qubit, cmembit, cregbit=None): """Apply a measure instruction to a qubit. Args: qubit (int): qubit is the qubit measured. cmembit (int): is the classical memory bit to store outcome in. cregbit (int, optional): is the classical register bit to store outcome in. """ # get measure outcome outcome, probability = self._get_measure_outcome(qubit) # update classical state membit = 1 << cmembit self._classical_memory = (self._classical_memory & (~membit)) | (int(outcome) << cmembit) if cregbit is not None: regbit = 1 << cregbit self._classical_register = \ (self._classical_register & (~regbit)) | (int(outcome) << cregbit) # update quantum state if outcome == '0': update_diag = [[1 / np.sqrt(probability), 0], [0, 0]] else: update_diag = [[0, 0], [0, 1 / np.sqrt(probability)]] # update classical state self._add_unitary(update_diag, [qubit]) def _add_qasm_reset(self, qubit): """Apply a reset instruction to a qubit. Args: qubit (int): the qubit being rest This is done by doing a simulating a measurement outcome and projecting onto the outcome state while renormalizing. """ # get measure outcome outcome, probability = self._get_measure_outcome(qubit) # update quantum state if outcome == '0': update = [[1 / np.sqrt(probability), 0], [0, 0]] self._add_unitary(update, [qubit]) else: update = [[0, 1 / np.sqrt(probability)], [0, 0]] self._add_unitary(update, [qubit]) def _validate_initial_statevector(self): """Validate an initial statevector""" # If initial statevector isn't set we don't need to validate if self._initial_statevector is None: return # Check statevector is correct length for number of qubits length = len(self._initial_statevector) required_dim = 2 ** self._number_of_qubits if length != required_dim: raise BasicAerError('initial statevector is incorrect length: ' + '{} != {}'.format(length, required_dim)) def _set_options(self, qobj_config=None, backend_options=None): """Set the backend options for all experiments in a qobj""" # Reset default options self._initial_statevector = self.DEFAULT_OPTIONS["initial_statevector"] self._chop_threshold = self.DEFAULT_OPTIONS["chop_threshold"] if backend_options is None: backend_options = {} # Check for custom initial statevector in backend_options first, # then config second if 'initial_statevector' in backend_options: self._initial_statevector = np.array(backend_options['initial_statevector'], dtype=complex) elif hasattr(qobj_config, 'initial_statevector'): self._initial_statevector = np.array(qobj_config.initial_statevector, dtype=complex) if self._initial_statevector is not None: # Check the initial statevector is normalized norm = np.linalg.norm(self._initial_statevector) if round(norm, 12) != 1: raise BasicAerError('initial statevector is not normalized: ' + 'norm {} != 1'.format(norm)) # Check for custom chop threshold # Replace with custom options if 'chop_threshold' in backend_options: self._chop_threshold = backend_options['chop_threshold'] elif hasattr(qobj_config, 'chop_threshold'): self._chop_threshold = qobj_config.chop_threshold def _initialize_statevector(self): """Set the initial statevector for simulation""" if self._initial_statevector is None: # Set to default state of all qubits in |0> self._statevector = np.zeros(2 ** self._number_of_qubits, dtype=complex) self._statevector[0] = 1 else: self._statevector = self._initial_statevector.copy() # Reshape to rank-N tensor self._statevector = np.reshape(self._statevector, self._number_of_qubits * [2]) def _get_statevector(self): """Return the current statevector""" vec = np.reshape(self._statevector, 2 ** self._number_of_qubits) vec[abs(vec) < self._chop_threshold] = 0.0 return vec def _validate_measure_sampling(self, experiment): """Determine if measure sampling is allowed for an experiment Args: experiment (QobjExperiment): a qobj experiment. """ # If shots=1 we should disable measure sampling. # This is also required for statevector simulator to return the # correct final statevector without silently dropping final measurements. if self._shots <= 1: self._sample_measure = False return # Check for config flag if hasattr(experiment.config, 'allows_measure_sampling'): self._sample_measure = experiment.config.allows_measure_sampling # If flag isn't found do a simple test to see if a circuit contains # no reset instructions, and no gates instructions after # the first measure. else: measure_flag = False for instruction in experiment.instructions: # If circuit contains reset operations we cannot sample if instruction.name == "reset": self._sample_measure = False return # If circuit contains a measure option then we can # sample only if all following operations are measures if measure_flag: # If we find a non-measure instruction # we cannot do measure sampling if instruction.name not in ["measure", "barrier", "id", "u0"]: self._sample_measure = False return elif instruction.name == "measure": measure_flag = True # If we made it to the end of the circuit without returning # measure sampling is allowed self._sample_measure = True
[docs] def run(self, qobj, backend_options=None): """Run qobj asynchronously. Args: qobj (Qobj): payload of the experiment backend_options (dict): backend options Returns: BasicAerJob: derived from BaseJob Additional Information: backend_options: Is a dict of options for the backend. It may contain * "initial_statevector": vector_like The "initial_statevector" option specifies a custom initial initial statevector for the simulator to be used instead of the all zero state. This size of this vector must be correct for the number of qubits in all experiments in the qobj. Example:: backend_options = { "initial_statevector": np.array([1, 0, 0, 1j]) / np.sqrt(2), } """ self._set_options(qobj_config=qobj.config, backend_options=backend_options) job_id = str(uuid.uuid4()) job = BasicAerJob(self, job_id, self._run_job, qobj) job.submit() return job
def _run_job(self, job_id, qobj): """Run experiments in qobj Args: job_id (str): unique id for the job. qobj (Qobj): job description Returns: Result: Result object """ self._validate(qobj) result_list = [] self._shots = qobj.config.shots self._memory = getattr(qobj.config, 'memory', False) self._qobj_config = qobj.config start = time.time() for experiment in qobj.experiments: result_list.append(self.run_experiment(experiment)) end = time.time() result = {'backend_name': self.name(), 'backend_version': self._configuration.backend_version, 'qobj_id': qobj.qobj_id, 'job_id': job_id, 'results': result_list, 'status': 'COMPLETED', 'success': True, 'time_taken': (end - start), 'header': qobj.header.to_dict()} return Result.from_dict(result)
[docs] def run_experiment(self, experiment): """Run an experiment (circuit) and return a single experiment result. Args: experiment (QobjExperiment): experiment from qobj experiments list Returns: dict: A result dictionary which looks something like:: { "name": name of this experiment (obtained from qobj.experiment header) "seed": random seed used for simulation "shots": number of shots used in the simulation "data": { "counts": {'0x9: 5, ...}, "memory": ['0x9', '0xF', '0x1D', ..., '0x9'] }, "status": status string for the simulation "success": boolean "time_taken": simulation time of this single experiment } Raises: BasicAerError: if an error occurred. """ start = time.time() self._number_of_qubits = experiment.config.n_qubits self._number_of_cmembits = experiment.config.memory_slots self._statevector = 0 self._classical_memory = 0 self._classical_register = 0 self._sample_measure = False # Validate the dimension of initial statevector if set self._validate_initial_statevector() # Get the seed looking in circuit, qobj, and then random. if hasattr(experiment.config, 'seed_simulator'): seed_simulator = experiment.config.seed_simulator elif hasattr(self._qobj_config, 'seed_simulator'): seed_simulator = self._qobj_config.seed_simulator else: # For compatibility on Windows force dyte to be int32 # and set the maximum value to be (2 ** 31) - 1 seed_simulator = np.random.randint(2147483647, dtype='int32') self._local_random.seed(seed=seed_simulator) # Check if measure sampling is supported for current circuit self._validate_measure_sampling(experiment) # List of final counts for all shots memory = [] # Check if we can sample measurements, if so we only perform 1 shot # and sample all outcomes from the final state vector if self._sample_measure: shots = 1 # Store (qubit, cmembit) pairs for all measure ops in circuit to # be sampled measure_sample_ops = [] else: shots = self._shots for _ in range(shots): self._initialize_statevector() # Initialize classical memory to all 0 self._classical_memory = 0 self._classical_register = 0 for operation in experiment.instructions: conditional = getattr(operation, 'conditional', None) if isinstance(conditional, int): conditional_bit_set = (self._classical_register >> conditional) & 1 if not conditional_bit_set: continue elif conditional is not None: mask = int(operation.conditional.mask, 16) if mask > 0: value = self._classical_memory & mask while (mask & 0x1) == 0: mask >>= 1 value >>= 1 if value != int(operation.conditional.val, 16): continue # Check if single gate if operation.name == 'unitary': qubits = operation.qubits gate = operation.params[0] self._add_unitary(gate, qubits) elif operation.name in ('U', 'u1', 'u2', 'u3'): params = getattr(operation, 'params', None) qubit = operation.qubits[0] gate = single_gate_matrix(operation.name, params) self._add_unitary(gate, [qubit]) # Check if CX gate elif operation.name in ('id', 'u0'): pass elif operation.name in ('CX', 'cx'): qubit0 = operation.qubits[0] qubit1 = operation.qubits[1] gate = cx_gate_matrix() self._add_unitary(gate, [qubit0, qubit1]) # Check if reset elif operation.name == 'reset': qubit = operation.qubits[0] self._add_qasm_reset(qubit) # Check if barrier elif operation.name == 'barrier': pass # Check if measure elif operation.name == 'measure': qubit = operation.qubits[0] cmembit = operation.memory[0] cregbit = operation.register[0] if hasattr(operation, 'register') else None if self._sample_measure: # If sampling measurements record the qubit and cmembit # for this measurement for later sampling measure_sample_ops.append((qubit, cmembit)) else: # If not sampling perform measurement as normal self._add_qasm_measure(qubit, cmembit, cregbit) elif operation.name == 'bfunc': mask = int(operation.mask, 16) relation = operation.relation val = int(operation.val, 16) cregbit = operation.register cmembit = operation.memory if hasattr(operation, 'memory') else None compared = (self._classical_register & mask) - val if relation == '==': outcome = (compared == 0) elif relation == '!=': outcome = (compared != 0) elif relation == '<': outcome = (compared < 0) elif relation == '<=': outcome = (compared <= 0) elif relation == '>': outcome = (compared > 0) elif relation == '>=': outcome = (compared >= 0) else: raise BasicAerError('Invalid boolean function relation.') # Store outcome in register and optionally memory slot regbit = 1 << cregbit self._classical_register = \ (self._classical_register & (~regbit)) | (int(outcome) << cregbit) if cmembit is not None: membit = 1 << cmembit self._classical_memory = \ (self._classical_memory & (~membit)) | (int(outcome) << cmembit) else: backend = self.name() err_msg = '{0} encountered unrecognized operation "{1}"' raise BasicAerError(err_msg.format(backend, operation.name)) # Add final creg data to memory list if self._number_of_cmembits > 0: if self._sample_measure: # If sampling we generate all shot samples from the final statevector memory = self._add_sample_measure(measure_sample_ops, self._shots) else: # Turn classical_memory (int) into bit string and pad zero for unused cmembits outcome = bin(self._classical_memory)[2:] memory.append(hex(int(outcome, 2))) # Add data data = {'counts': dict(Counter(memory))} # Optionally add memory list if self._memory: data['memory'] = memory # Optionally add final statevector if self.SHOW_FINAL_STATE: data['statevector'] = self._get_statevector() # Remove empty counts and memory for statevector simulator if not data['counts']: data.pop('counts') if 'memory' in data and not data['memory']: data.pop('memory') end = time.time() return {'name': experiment.header.name, 'seed_simulator': seed_simulator, 'shots': self._shots, 'data': data, 'status': 'DONE', 'success': True, 'time_taken': (end - start), 'header': experiment.header.to_dict()}
def _validate(self, qobj): """Semantic validations of the qobj which cannot be done via schemas.""" n_qubits = qobj.config.n_qubits max_qubits = self.configuration().n_qubits if n_qubits > max_qubits: raise BasicAerError('Number of qubits {} '.format(n_qubits) + 'is greater than maximum ({}) '.format(max_qubits) + 'for "{}".'.format(self.name())) for experiment in qobj.experiments: name = experiment.header.name if experiment.config.memory_slots == 0: logger.warning('No classical registers in circuit "%s", ' 'counts will be empty.', name) elif 'measure' not in [op.name for op in experiment.instructions]: logger.warning('No measurements in circuit "%s", ' 'classical register will remain all zeros.', name)