Source code for qiskit.optimization.converters.integer_to_binary

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""The converter to map integer variables in a quadratic program to binary variables."""

import copy
import logging
from typing import Dict, List, Optional, Tuple

import numpy as np

from ..algorithms.optimization_algorithm import OptimizationResult
from ..exceptions import QiskitOptimizationError
from ..problems.quadratic_objective import QuadraticObjective
from ..problems.quadratic_program import QuadraticProgram
from ..problems.variable import Variable

logger = logging.getLogger(__name__)


[docs]class IntegerToBinary: """Convert a :class:`~qiskit.optimization.problems.QuadraticProgram` into new one by encoding integer with binary variables. This bounded-coefficient encoding used in this converted is proposed in [1], Eq. (5). Examples: >>> from qiskit.optimization.problems import QuadraticProgram >>> from qiskit.optimization.converters import IntegerToBinary >>> problem = QuadraticProgram() >>> var = problem.integer_var(name='x', lowerbound=0, upperbound=10) >>> conv = IntegerToBinary() >>> problem2 = conv.encode(problem) References: [1]: Sahar Karimi, Pooya Ronagh (2017), Practical Integer-to-Binary Mapping for Quantum Annealers. arxiv.org:1706.01945. """ _delimiter = '@' # users are supposed not to use this character in variable names def __init__(self) -> None: self._src = None self._dst = None self._conv = {} # Dict[Variable, List[Tuple[str, int]]] # e.g., self._conv = {x: [('x@1', 1), ('x@2', 2)]}
[docs] def encode(self, op: QuadraticProgram, name: Optional[str] = None) -> QuadraticProgram: """Convert an integer problem into a new problem with binary variables. Args: op: The problem to be solved, that may contain integer variables. name: The name of the converted problem. If not provided, the name of the input problem is used. Returns: The converted problem, that contains no integer variables. Raises: QiskitOptimizationError: if variable or constraint type is not supported. """ # copy original QP as reference. self._src = copy.deepcopy(op) if self._src.get_num_integer_vars() > 0: # initialize new QP self._dst = QuadraticProgram() # declare variables for x in self._src.variables: if x.vartype == Variable.Type.INTEGER: new_vars = self._encode_var(x.name, x.lowerbound, x.upperbound) self._conv[x] = new_vars for (var_name, _) in new_vars: self._dst.binary_var(var_name) else: if x.vartype == Variable.Type.CONTINUOUS: self._dst.continuous_var(x.lowerbound, x.upperbound, x.name) elif x.vartype == Variable.Type.BINARY: self._dst.binary_var(x.name) else: raise QiskitOptimizationError( "Unsupported variable type {}".format(x.vartype)) self._substitute_int_var() else: # just copy the problem if no integer variables exist self._dst = copy.deepcopy(op) # adjust name of resulting problem if necessary if name: self._dst.name = name else: self._dst.name = self._src.name return self._dst
def _encode_var(self, name: str, lowerbound: int, upperbound: int) -> List[Tuple[str, int]]: var_range = upperbound - lowerbound power = int(np.log2(var_range)) bounded_coef = var_range - (2 ** power - 1) coeffs = [2 ** i for i in range(power)] + [bounded_coef] return [(name + self._delimiter + str(i), coef) for i, coef in enumerate(coeffs)] def _encode_linear_coefficients_dict(self, coefficients: Dict[str, float]) \ -> Tuple[Dict[str, float], float]: constant = 0 linear = {} for name, v in coefficients.items(): x = self._src.get_variable(name) if x in self._conv: for y, coeff in self._conv[x]: linear[y] = v * coeff constant += v * x.lowerbound else: linear[x.name] = v return linear, constant def _encode_quadratic_coefficients_dict(self, coefficients: Dict[Tuple[str, str], float]) \ -> Tuple[Dict[Tuple[str, str], float], Dict[str, float], float]: constant = 0 linear = {} quadratic = {} for (name_i, name_j), v in coefficients.items(): x = self._src.get_variable(name_i) y = self._src.get_variable(name_j) if x in self._conv and y not in self._conv: for z_x, coeff_x in self._conv[x]: quadratic[z_x, y.name] = v * coeff_x linear[y.name] = linear.get(y.name, 0.0) + v * x.lowerbound elif x not in self._conv and y in self._conv: for z_y, coeff_y in self._conv[y]: quadratic[x.name, z_y] = v * coeff_y linear[x.name] = linear.get(x.name, 0.0) + v * y.lowerbound elif x in self._conv and y in self._conv: for z_x, coeff_x in self._conv[x]: for z_y, coeff_y in self._conv[y]: quadratic[z_x, z_y] = v * coeff_x * coeff_y for z_x, coeff_x in self._conv[x]: linear[z_x] = linear.get(z_x, 0.0) + v * y.lowerbound for z_y, coeff_y in self._conv[y]: linear[z_y] = linear.get(z_y, 0.0) + v * x.lowerbound constant += v * x.lowerbound * y.lowerbound else: quadratic[x.name, y.name] = v return quadratic, linear, constant def _substitute_int_var(self): # set objective linear, linear_constant = self._encode_linear_coefficients_dict( self._src.objective.linear.to_dict(use_name=True)) quadratic, quadratic_linear, quadratic_constant = \ self._encode_quadratic_coefficients_dict( self._src.objective.quadratic.to_dict(use_name=True)) constant = self._src.objective.constant + linear_constant + quadratic_constant for i, v in quadratic_linear.items(): linear[i] = linear.get(i, 0) + v if self._src.objective.sense == QuadraticObjective.Sense.MINIMIZE: self._dst.minimize(constant, linear, quadratic) else: self._dst.maximize(constant, linear, quadratic) # set linear constraints for constraint in self._src.linear_constraints: linear, constant = self._encode_linear_coefficients_dict(constraint.linear.to_dict()) self._dst.linear_constraint(linear, constraint.sense, constraint.rhs - constant, constraint.name) # set quadratic constraints for constraint in self._src.quadratic_constraints: linear, linear_constant = self._encode_linear_coefficients_dict( constraint.linear.to_dict()) quadratic, quadratic_linear, quadratic_constant = \ self._encode_quadratic_coefficients_dict(constraint.quadratic.to_dict()) constant = linear_constant + quadratic_constant for i, v in quadratic_linear.items(): linear[i] = linear.get(i, 0) + v self._dst.quadratic_constraint(linear, quadratic, constraint.sense, constraint.rhs - constant, constraint.name)
[docs] def decode(self, result: OptimizationResult) -> OptimizationResult: """Convert the encoded problem (binary variables) back to the original (integer variables). Args: result: The result of the converted problem. Returns: The result of the original problem. """ vals = result.x new_vals = self._decode_var(vals) result.x = new_vals return result
def _decode_var(self, vals) -> List[int]: # decode integer values sol = {x.name: float(vals[i]) for i, x in enumerate(self._dst.variables)} new_vals = [] for x in self._src.variables: if x in self._conv: new_vals.append(sum(sol[aux] * coef for aux, coef in self._conv[x]) + x.lowerbound) else: new_vals.append(sol[x.name]) return new_vals