Source code for qiskit.finance.components.uncertainty_problems.european_call_expected_value

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""The European Call Option Expected Value."""

from typing import Optional, Union, List
import numpy as np
from qiskit.circuit.library import IntegerComparator
from qiskit.aqua.components.uncertainty_models import UnivariateDistribution
from qiskit.aqua.components.uncertainty_problems import UncertaintyProblem


[docs]class EuropeanCallExpectedValue(UncertaintyProblem): """The European Call Option Expected Value. Evaluates the expected payoff for a European call option given an uncertainty model. The payoff function is f(S, K) = max(0, S - K) for a spot price S and strike price K. """ def __init__(self, uncertainty_model: UnivariateDistribution, strike_price: float, c_approx: float, i_state: Optional[Union[List[int], np.ndarray]] = None, i_compare: Optional[int] = None, i_objective: Optional[int] = None) -> None: """ Constructor. Args: uncertainty_model: uncertainty model for spot price strike_price: strike price of the European option c_approx: approximation factor for linear payoff i_state: indices of qubits representing the uncertainty i_compare: index of qubit for comparing spot price to strike price (enabling payoff or not) i_objective: index of qubit for objective function """ super().__init__(uncertainty_model.num_target_qubits + 2) self._uncertainty_model = uncertainty_model self._strike_price = strike_price self._c_approx = c_approx if i_state is None: i_state = list(range(uncertainty_model.num_target_qubits)) self.i_state = i_state if i_compare is None: i_compare = uncertainty_model.num_target_qubits self.i_compare = i_compare if i_objective is None: i_objective = uncertainty_model.num_target_qubits + 1 self.i_objective = i_objective # map strike price to {0, ..., 2^n-1} lower = uncertainty_model.low upper = uncertainty_model.high self._mapped_strike_price = int(np.round((strike_price - lower) / (upper - lower) * (uncertainty_model.num_values - 1))) # create comparator self._comparator = IntegerComparator(uncertainty_model.num_target_qubits, self._mapped_strike_price) self.offset_angle_zero = np.pi / 4 * (1 - self._c_approx) if self._mapped_strike_price < uncertainty_model.num_values - 1: self.offset_angle = -1 * np.pi / 2 * self._c_approx * self._mapped_strike_price / \ (uncertainty_model.num_values - self._mapped_strike_price - 1) self.slope_angle = np.pi / 2 * self._c_approx / \ (uncertainty_model.num_values - self._mapped_strike_price - 1) else: self.offset_angle = 0 self.slope_angle = 0
[docs] def value_to_estimation(self, value): estimator = value - 1 / 2 + np.pi / 4 * self._c_approx estimator *= 2 / np.pi / self._c_approx estimator *= (self._uncertainty_model.num_values - self._mapped_strike_price - 1) estimator *= (self._uncertainty_model.high - self._uncertainty_model.low) / \ (self._uncertainty_model.num_values - 1) return estimator
[docs] def required_ancillas(self): num_uncertainty_ancillas = self._uncertainty_model.required_ancillas() num_comparator_ancillas = self._comparator.num_ancilla_qubits num_ancillas = int(np.maximum(num_uncertainty_ancillas, num_comparator_ancillas)) return num_ancillas
[docs] def build(self, qc, q, q_ancillas=None, params=None): # get qubits q_state = [q[i] for i in self.i_state] q_compare = q[self.i_compare] q_objective = q[self.i_objective] # apply uncertainty model self._uncertainty_model.build(qc, q_state, q_ancillas) # apply comparator to compare qubit qubits = q_state[:] + [q_compare] if q_ancillas: qubits += q_ancillas[:self._comparator.num_ancilla_qubits] qc.append(self._comparator.to_instruction(), qubits) # apply approximate payoff function qc.ry(2 * self.offset_angle_zero, q_objective) qc.cry(2 * self.offset_angle, q_compare, q_objective) for i, q_i in enumerate(q_state): qc.mcry(2 * self.slope_angle * 2 ** i, [q_compare, q_i], q_objective, None)