Source code for qiskit.finance.components.uncertainty_problems.european_call_delta

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""The European Call Option Delta."""

from typing import Optional, Union, List
import numpy as np
from qiskit.circuit.library import IntegerComparator
from qiskit.aqua.components.uncertainty_models import UnivariateDistribution
from qiskit.aqua.components.uncertainty_problems import UncertaintyProblem

# pylint: disable=invalid-name


[docs]class EuropeanCallDelta(UncertaintyProblem): """The European Call Option Delta. Evaluates the variance for a European call option given an uncertainty model. The payoff function is f(S, K) = max(0, S - K) for a spot price S and strike price K. """ def __init__(self, uncertainty_model: UnivariateDistribution, strike_price: float, i_state: Optional[Union[List[int], np.ndarray]] = None, i_objective: Optional[int] = None) -> None: """ Constructor. Args: uncertainty_model: uncertainty model for spot price strike_price: strike price of the European option i_state: indices of qubits representing the uncertainty i_objective: index of qubit for objective function """ super().__init__(uncertainty_model.num_target_qubits + 1) self._uncertainty_model = uncertainty_model self._strike_price = strike_price if i_state is None: i_state = list(range(uncertainty_model.num_target_qubits)) self.i_state = i_state if i_objective is None: i_objective = uncertainty_model.num_target_qubits self.i_objective = i_objective # map strike price to {0, ..., 2^n-1} lb = uncertainty_model.low ub = uncertainty_model.high self._mapped_strike_price = \ int(np.ceil((strike_price - lb) / (ub - lb) * (uncertainty_model.num_values - 1))) # create comparator self._comparator = IntegerComparator(uncertainty_model.num_target_qubits, self._mapped_strike_price)
[docs] def required_ancillas(self): num_uncertainty_ancillas = self._uncertainty_model.required_ancillas() num_comparator_ancillas = self._comparator.num_ancilla_qubits num_ancillas = num_uncertainty_ancillas + num_comparator_ancillas return num_ancillas
[docs] def required_ancillas_controlled(self): num_uncertainty_ancillas = self._uncertainty_model.required_ancillas_controlled() num_comparator_ancillas = self._comparator.num_ancilla_qubits num_ancillas_controlled = num_uncertainty_ancillas + num_comparator_ancillas return num_ancillas_controlled
[docs] def build(self, qc, q, q_ancillas=None, params=None): # get qubit lists q_state = [q[i] for i in self.i_state] q_objective = q[self.i_objective] # apply uncertainty model self._uncertainty_model.build(qc, q_state, q_ancillas) # apply comparator to compare qubit qubits = q_state[:] + [q_objective] if q_ancillas: qubits += q_ancillas[:self.required_ancillas()] qc.append(self._comparator.to_instruction(), qubits)