# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Gate described by the time evolution of a Hermitian Hamiltonian operator.
"""
from numbers import Number
import numpy
import scipy.linalg
from qiskit.circuit import Gate, QuantumCircuit, QuantumRegister
from qiskit.quantum_info.operators.predicates import matrix_equal
from qiskit.quantum_info.operators.predicates import is_hermitian_matrix
from qiskit.extensions.exceptions import ExtensionError
from .unitary import UnitaryGate
[docs]class HamiltonianGate(Gate):
"""Class for representing evolution by a Hermitian Hamiltonian operator as a gate. This gate
resolves to a UnitaryGate U(t) = exp(-1j * t * H), which can be decomposed into basis gates if
it is 2 qubits or less, or simulated directly in Aer for more qubits. """
def __init__(self, data, time, label=None):
"""Create a gate from a hamiltonian operator and evolution time parameter t
Args:
data (matrix or Operator): a hermitian operator.
time (float): time evolution parameter.
label (str): unitary name for backend [Default: None].
Raises:
ExtensionError: if input data is not an N-qubit unitary operator.
"""
if hasattr(data, 'to_matrix'):
# If input is Gate subclass or some other class object that has
# a to_matrix method this will call that method.
data = data.to_matrix()
elif hasattr(data, 'to_operator'):
# If input is a BaseOperator subclass this attempts to convert
# the object to an Operator so that we can extract the underlying
# numpy matrix from `Operator.data`.
data = data.to_operator().data
# Convert to numpy array in case not already an array
data = numpy.array(data, dtype=complex)
# Check input is unitary
if not is_hermitian_matrix(data):
raise ExtensionError("Input matrix is not Hermitian.")
if isinstance(time, Number) and time != numpy.real(time):
raise ExtensionError("Evolution time is not real.")
# Check input is N-qubit matrix
input_dim, output_dim = data.shape
num_qubits = int(numpy.log2(input_dim))
if input_dim != output_dim or 2**num_qubits != input_dim:
raise ExtensionError(
"Input matrix is not an N-qubit operator.")
# Store instruction params
super().__init__('hamiltonian', num_qubits, [data, time], label=label)
def __eq__(self, other):
if not isinstance(other, HamiltonianGate):
return False
if self.label != other.label:
return False
operators_eq = matrix_equal(self.params[0], other.params[0], ignore_phase=False)
times_eq = self.params[1] == other.params[1]
return operators_eq and times_eq
[docs] def to_matrix(self):
"""Return matrix for the unitary."""
try:
# pylint: disable=no-member
return scipy.linalg.expm(-1j * self.params[0] * float(self.params[1]))
except TypeError:
raise TypeError("Unable to generate Unitary matrix for "
"unbound t parameter {}".format(self.params[1]))
[docs] def inverse(self):
"""Return the adjoint of the unitary."""
return self.adjoint()
[docs] def conjugate(self):
"""Return the conjugate of the Hamiltonian."""
return HamiltonianGate(numpy.conj(self.params[0]), -self.params[1])
[docs] def adjoint(self):
"""Return the adjoint of the unitary."""
return HamiltonianGate(self.params[0], -self.params[1])
[docs] def transpose(self):
"""Return the transpose of the Hamiltonian."""
return HamiltonianGate(numpy.transpose(self.params[0]), self.params[1])
def _define(self):
"""Calculate a subcircuit that implements this unitary."""
q = QuantumRegister(self.num_qubits, 'q')
self.definition = [(UnitaryGate(self.to_matrix()), q[:], [])]
[docs] def qasm(self):
"""Raise an error, as QASM is not defined for the HamiltonianGate."""
raise ExtensionError("HamiltonianGate as no QASM definition.")
def hamiltonian(self, operator, time, qubits, label=None):
"""Apply hamiltonian evolution to to qubits."""
if not isinstance(qubits, list):
qubits = [qubits]
return self.append(HamiltonianGate(data=operator, time=time, label=label), qubits, [])
QuantumCircuit.hamiltonian = hamiltonian