Source code for qiskit.extensions.hamiltonian_gate

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Gate described by the time evolution of a Hermitian Hamiltonian operator.
"""

from numbers import Number
import numpy
import scipy.linalg

from qiskit.circuit import Gate, QuantumCircuit, QuantumRegister
from qiskit.quantum_info.operators.predicates import matrix_equal
from qiskit.quantum_info.operators.predicates import is_hermitian_matrix
from qiskit.extensions.exceptions import ExtensionError

from .unitary import UnitaryGate


[docs]class HamiltonianGate(Gate): """Class for representing evolution by a Hermitian Hamiltonian operator as a gate. This gate resolves to a UnitaryGate U(t) = exp(-1j * t * H), which can be decomposed into basis gates if it is 2 qubits or less, or simulated directly in Aer for more qubits. """ def __init__(self, data, time, label=None): """Create a gate from a hamiltonian operator and evolution time parameter t Args: data (matrix or Operator): a hermitian operator. time (float): time evolution parameter. label (str): unitary name for backend [Default: None]. Raises: ExtensionError: if input data is not an N-qubit unitary operator. """ if hasattr(data, 'to_matrix'): # If input is Gate subclass or some other class object that has # a to_matrix method this will call that method. data = data.to_matrix() elif hasattr(data, 'to_operator'): # If input is a BaseOperator subclass this attempts to convert # the object to an Operator so that we can extract the underlying # numpy matrix from `Operator.data`. data = data.to_operator().data # Convert to numpy array in case not already an array data = numpy.array(data, dtype=complex) # Check input is unitary if not is_hermitian_matrix(data): raise ExtensionError("Input matrix is not Hermitian.") if isinstance(time, Number) and time != numpy.real(time): raise ExtensionError("Evolution time is not real.") # Check input is N-qubit matrix input_dim, output_dim = data.shape num_qubits = int(numpy.log2(input_dim)) if input_dim != output_dim or 2**num_qubits != input_dim: raise ExtensionError( "Input matrix is not an N-qubit operator.") # Store instruction params super().__init__('hamiltonian', num_qubits, [data, time], label=label) def __eq__(self, other): if not isinstance(other, HamiltonianGate): return False if self.label != other.label: return False operators_eq = matrix_equal(self.params[0], other.params[0], ignore_phase=False) times_eq = self.params[1] == other.params[1] return operators_eq and times_eq
[docs] def to_matrix(self): """Return matrix for the unitary.""" try: # pylint: disable=no-member return scipy.linalg.expm(-1j * self.params[0] * float(self.params[1])) except TypeError: raise TypeError("Unable to generate Unitary matrix for " "unbound t parameter {}".format(self.params[1]))
[docs] def inverse(self): """Return the adjoint of the unitary.""" return self.adjoint()
[docs] def conjugate(self): """Return the conjugate of the Hamiltonian.""" return HamiltonianGate(numpy.conj(self.params[0]), -self.params[1])
[docs] def adjoint(self): """Return the adjoint of the unitary.""" return HamiltonianGate(self.params[0], -self.params[1])
[docs] def transpose(self): """Return the transpose of the Hamiltonian.""" return HamiltonianGate(numpy.transpose(self.params[0]), self.params[1])
def _define(self): """Calculate a subcircuit that implements this unitary.""" q = QuantumRegister(self.num_qubits, 'q') self.definition = [(UnitaryGate(self.to_matrix()), q[:], [])]
[docs] def qasm(self): """Raise an error, as QASM is not defined for the HamiltonianGate.""" raise ExtensionError("HamiltonianGate as no QASM definition.")
def hamiltonian(self, operator, time, qubits, label=None): """Apply hamiltonian evolution to to qubits.""" if not isinstance(qubits, list): qubits = [qubits] return self.append(HamiltonianGate(data=operator, time=time, label=label), qubits, []) QuantumCircuit.hamiltonian = hamiltonian