Source code for qiskit.converters.circuit_to_instruction

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Helper function for converting a circuit to an instruction."""

from qiskit.exceptions import QiskitError
from qiskit.circuit.instruction import Instruction
from qiskit.circuit.quantumregister import QuantumRegister, Qubit
from qiskit.circuit.classicalregister import ClassicalRegister


[docs]def circuit_to_instruction(circuit, parameter_map=None, equivalence_library=None): """Build an ``Instruction`` object from a ``QuantumCircuit``. The instruction is anonymous (not tied to a named quantum register), and so can be inserted into another circuit. The instruction will have the same string name as the circuit. Args: circuit (QuantumCircuit): the input circuit. parameter_map (dict): For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the instruction. If None, existing circuit parameters will also parameterize the instruction. equivalence_library (EquivalenceLibrary): Optional equivalence library where the converted instruction will be registered. Raises: QiskitError: if parameter_map is not compatible with circuit Return: qiskit.circuit.Instruction: an instruction equivalent to the action of the input circuit. Upon decomposition, this instruction will yield the components comprising the original circuit. Example: .. jupyter-execute:: from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.converters import circuit_to_instruction %matplotlib inline q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) circuit_to_instruction(circ) """ if parameter_map is None: parameter_dict = {p: p for p in circuit.parameters} else: parameter_dict = circuit._unroll_param_dict(parameter_map) if parameter_dict.keys() != circuit.parameters: raise QiskitError(('parameter_map should map all circuit parameters. ' 'Circuit parameters: {}, parameter_map: {}').format( circuit.parameters, parameter_dict)) instruction = Instruction(name=circuit.name, num_qubits=sum([qreg.size for qreg in circuit.qregs]), num_clbits=sum([creg.size for creg in circuit.cregs]), params=sorted(parameter_dict.values(), key=lambda p: p.name)) instruction.condition = None def find_bit_position(bit): """find the index of a given bit (Register, int) within a flat ordered list of bits of the circuit """ if isinstance(bit, Qubit): ordered_regs = circuit.qregs else: ordered_regs = circuit.cregs reg_index = ordered_regs.index(bit.register) return sum([reg.size for reg in ordered_regs[:reg_index]]) + bit.index target = circuit.assign_parameters(parameter_dict, inplace=False) if equivalence_library is not None: equivalence_library.add_equivalence(instruction, target) definition = target.data if instruction.num_qubits > 0: q = QuantumRegister(instruction.num_qubits, 'q') if instruction.num_clbits > 0: c = ClassicalRegister(instruction.num_clbits, 'c') definition = list(map(lambda x: (x[0], list(map(lambda y: q[find_bit_position(y)], x[1])), list(map(lambda y: c[find_bit_position(y)], x[2]))), definition)) instruction.definition = definition return instruction