Source code for qiskit.circuit.library.standard_gates.u2

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""One-pulse single-qubit gate."""

import numpy
from qiskit.qasm import pi
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister


[docs]class U2Gate(Gate): r"""Single-qubit rotation about the X+Z axis. Implemented using one X90 pulse on IBM Quantum systems: .. math:: U2(\phi, \lambda) = RZ(\phi+\pi/2).RX(\frac{\pi}{2}).RZ(\lambda-\pi/2) **Circuit symbol:** .. parsed-literal:: ┌─────────┐ q_0: ┤ U2(φ,λ) ├ └─────────┘ **Matrix Representation:** .. math:: U2(\phi, \lambda) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -e^{i\lambda} \\ e^{i\phi} & e^{i(\phi+\lambda)} \end{pmatrix} **Examples:** .. math:: U2(0, \pi) = H .. seealso:: :class:`~qiskit.circuit.library.standard_gates.U3Gate`: U3 is a generalization of U2 that covers all single-qubit rotations, using two X90 pulses. """ def __init__(self, phi, lam, label=None): """Create new U2 gate.""" super().__init__('u2', 1, [phi, lam], label=label) def _define(self): from .u3 import U3Gate definition = [] q = QuantumRegister(1, 'q') rule = [(U3Gate(pi / 2, self.params[0], self.params[1]), [q[0]], [])] for inst in rule: definition.append(inst) self.definition = definition
[docs] def inverse(self): r"""Return inverted U2 gate. :math:`U2(\phi, \lambda)^{\dagger} =U2(-\lambda-\pi, -\phi+\pi)`) """ return U2Gate(-self.params[1] - pi, -self.params[0] + pi)
[docs] def to_matrix(self): """Return a Numpy.array for the U2 gate.""" isqrt2 = 1 / numpy.sqrt(2) phi, lam = self.params phi, lam = float(phi), float(lam) return numpy.array([ [ isqrt2, -numpy.exp(1j * lam) * isqrt2 ], [ numpy.exp(1j * phi) * isqrt2, numpy.exp(1j * (phi + lam)) * isqrt2 ] ], dtype=complex)