Source code for qiskit.circuit.library.standard_gates.rzx

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Two-qubit ZX-rotation gate."""

from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister
from .rz import RZGate
from .h import HGate
from .x import CXGate


[docs]class RZXGate(Gate): r"""A parameteric 2-qubit :math:`Z \otimes X` interaction (rotation about ZX). This gate is maximally entangling at :math:`\theta = \pi/2`. The cross-resonance gate (CR) for superconducting qubits implements a ZX interaction (however other terms are also present in an experiment). **Circuit Symbol:** .. parsed-literal:: ┌─────────┐ q_0: ┤0 ├ │ Rzx(θ) │ q_1: ┤1 ├ └─────────┘ **Matrix Representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} R_{ZX}(\theta)\ q_0, q_1 = exp(-i \frac{\theta}{2} X{\otimes}Z) = \begin{pmatrix} \cos(\th) & 0 & -i\sin(\th) & 0 \\ 0 & \cos(\th) & 0 & i\sin(\th) \\ -i\sin(\th) & 0 & \cos(\th) & 0 \\ 0 & i\sin(\th) & 0 & \cos(\th) \end{pmatrix} .. note:: In Qiskit's convention, higher qubit indices are more significant (little endian convention). In the above example we apply the gate on (q_0, q_1) which results in the :math:`X \otimes Z` tensor order. Instead, if we apply it on (q_1, q_0), the matrix will be :math:`Z \otimes X`: .. parsed-literal:: ┌─────────┐ q_0: ┤1 ├ │ Rzx(θ) │ q_1: ┤0 ├ └─────────┘ .. math:: \newcommand{\th}{\frac{\theta}{2}} R_{ZX}(\theta)\ q_1, q_0 = exp(-i \frac{\theta}{2} Z{\otimes}X) = \begin{pmatrix} \cos(\th) & -i\sin(\th) & 0 & 0 \\ -i\sin(\th) & \cos(\th) & 0 & 0 \\ 0 & 0 & \cos(\th) & i\sin(\th) \\ 0 & 0 & i\sin(\th) & \cos(\th) \end{pmatrix} This is a direct sum of RX rotations, so this gate is equivalent to a uniformly controlled (multiplexed) RX gate: .. math:: R_{ZX}(\theta)\ q_1, q_0 = \begin{pmatrix} RX(\theta) & 0 \\ 0 & RX(-\theta) \end{pmatrix} **Examples:** .. math:: R_{ZX}(\theta = 0) = I .. math:: R_{ZX}(\theta = 2\pi) = -I .. math:: R_{ZX}(\theta = \pi) = -i Z \otimes X .. math:: RZX(\theta = \frac{\pi}{2}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & -i & 0 \\ 0 & 1 & 0 & i \\ -i & 0 & 1 & 0 \\ 0 & i & 0 & 1 \end{pmatrix} """ def __init__(self, theta): """Create new RZX gate.""" super().__init__('rzx', 2, [theta]) def _define(self): """ gate rzx(theta) a, b { h b; cx a, b; u1(theta) b; cx a, b; h b;} """ q = QuantumRegister(2, 'q') self.definition = [ (HGate(), [q[1]], []), (CXGate(), [q[0], q[1]], []), (RZGate(self.params[0]), [q[1]], []), (CXGate(), [q[0], q[1]], []), (HGate(), [q[1]], []) ]
[docs] def inverse(self): """Return inverse RZX gate (i.e. with the negative rotation angle).""" return RZXGate(-self.params[0])
# TODO: this is the correct definition but has a global phase with respect # to the decomposition above. Restore after allowing phase on circuits. # def to_matrix(self): # """Return a numpy.array for the RZX gate.""" # theta = self.params[0] # return np.array([[np.cos(theta/2), 0, -1j*np.sin(theta/2), 0], # [0, np.cos(theta/2), 0, 1j*np.sin(theta/2)], # [-1j*np.sin(theta/2), 0, np.cos(theta/2), 0], # [0, 1j*np.sin(theta/2), 0, np.cos(theta/2)]], # dtype=complex)