Source code for qiskit.circuit.library.standard_gates.rxx

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Two-qubit XX-rotation gate."""

from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister


[docs]class RXXGate(Gate): r"""A parameteric 2-qubit :math:`X \otimes X` interaction (rotation about XX). This gate is symmetric, and is maximally entangling at :math:`\theta = \pi/2`. **Circuit Symbol:** .. parsed-literal:: ┌─────────┐ q_0: ┤1 ├ │ Rxx(ϴ) │ q_1: ┤0 ├ └─────────┘ **Matrix Representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} R_{XX}(\theta) = exp(-i \th X{\otimes}X) = \begin{pmatrix} \cos(\th) & 0 & 0 & -i\sin(\th) \\ 0 & \cos(\th) & -i\sin(\th) & 0 \\ 0 & -i\sin(\th) & \cos(\th) & 0 \\ -i\sin(\th) & 0 & 0 & \cos(\th) \end{pmatrix} **Examples:** .. math:: R_{XX}(\theta = 0) = I .. math:: R_{XX}(\theta = \pi) = i X \otimes X .. math:: R_{XX}(\theta = \frac{\pi}{2}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & -i \\ 0 & 1 & -i & 0 \\ 0 & -i & 1 & 0 \\ -i & 0 & 0 & 1 \end{pmatrix} """ def __init__(self, theta): """Create new RXX gate.""" super().__init__('rxx', 2, [theta]) def _define(self): """Calculate a subcircuit that implements this unitary.""" from .x import CXGate from .u1 import U1Gate from .h import HGate definition = [] q = QuantumRegister(2, 'q') theta = self.params[0] rule = [ (HGate(), [q[0]], []), (HGate(), [q[1]], []), (CXGate(), [q[0], q[1]], []), (U1Gate(theta), [q[1]], []), (CXGate(), [q[0], q[1]], []), (HGate(), [q[1]], []), (HGate(), [q[0]], []), ] for inst in rule: definition.append(inst) self.definition = definition
[docs] def inverse(self): """Return inverse RXX gate (i.e. with the negative rotation angle).""" return RXXGate(-self.params[0])
# NOTE: we should use the following as the canonical matrix # definition but we don't include it yet since it differs from # the circuit decomposition matrix by a global phase # def to_matrix(self): # """Return a Numpy.array for the RXX gate.""" # theta = float(self.params[0]) # return np.array([ # [np.cos(theta / 2), 0, 0, -1j * np.sin(theta / 2)], # [0, np.cos(theta / 2), -1j * np.sin(theta / 2), 0], # [0, -1j * np.sin(theta / 2), np.cos(theta / 2), 0], # [-1j * np.sin(theta / 2), 0, 0, np.cos(theta / 2)]], dtype=complex)