Source code for qiskit.circuit.library.standard_gates.h

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Hadamard gate."""

import numpy
from qiskit.circuit.controlledgate import ControlledGate
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit._utils import _compute_control_matrix
from qiskit.qasm import pi
from .t import TGate, TdgGate
from .s import SGate, SdgGate


[docs]class HGate(Gate): r"""Single-qubit Hadamard gate. This gate is a \pi rotation about the X+Z axis, and has the effect of changing computation basis from :math:`|0\rangle,|1\rangle` to :math:`|+\rangle,|-\rangle` and vice-versa. **Circuit symbol:** .. parsed-literal:: ┌───┐ q_0: ┤ H ├ └───┘ **Matrix Representation:** .. math:: H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} """ def __init__(self, label=None): """Create new H gate.""" super().__init__('h', 1, [], label=label) def _define(self): """ gate h a { u2(0,pi) a; } """ from .u2 import U2Gate definition = [] q = QuantumRegister(1, 'q') rule = [ (U2Gate(0, pi), [q[0]], []) ] for inst in rule: definition.append(inst) self.definition = definition
[docs] def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None): """Return a (multi-)controlled-H gate. One control qubit returns a CH gate. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ if num_ctrl_qubits == 1: gate = CHGate(label=label, ctrl_state=ctrl_state) gate.base_gate.label = self.label return gate return super().control(num_ctrl_qubits=num_ctrl_qubits, label=label, ctrl_state=ctrl_state)
[docs] def inverse(self): r"""Return inverted H gate (itself).""" return HGate() # self-inverse
[docs] def to_matrix(self): """Return a Numpy.array for the H gate.""" return numpy.array([[1, 1], [1, -1]], dtype=complex) / numpy.sqrt(2)
[docs]class CHGate(ControlledGate): r"""Controlled-Hadamard gate. Applies a Hadamard on the target qubit if the control is in the :math:`|1\rangle` state. **Circuit symbol:** q_0: ──■── ┌─┴─┐ q_1: ┤ H ├ └───┘ **Matrix Representation:** .. math:: CH\ q_0, q_1 = I \otimes |0\rangle\langle 0| + H \otimes |1\rangle\langle 1| = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} .. note:: In Qiskit's convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_1. Thus a textbook matrix for this gate will be: .. parsed-literal:: ┌───┐ q_0: ┤ H ├ └─┬─┘ q_1: ──■── .. math:: CH\ q_1, q_0 = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix} """ def __init__(self, label=None, ctrl_state=None): """Create new CH gate.""" super().__init__('ch', 2, [], num_ctrl_qubits=1, label=label, ctrl_state=ctrl_state) self.base_gate = HGate() def _define(self): """ gate ch a,b { s b; h b; t b; cx a, b; tdg b; h b; sdg b; } """ from .x import CXGate # pylint: disable=cyclic-import definition = [] q = QuantumRegister(2, 'q') rule = [ (SGate(), [q[1]], []), (HGate(), [q[1]], []), (TGate(), [q[1]], []), (CXGate(), [q[0], q[1]], []), (TdgGate(), [q[1]], []), (HGate(), [q[1]], []), (SdgGate(), [q[1]], []) ] for inst in rule: definition.append(inst) self.definition = definition
[docs] def inverse(self): """Return inverted CH gate (itself).""" return CHGate() # self-inverse
[docs] def to_matrix(self): """Return a numpy.array for the CH gate.""" return _compute_control_matrix(self.base_gate.to_matrix(), self.num_ctrl_qubits, ctrl_state=self.ctrl_state)