Source code for qiskit.circuit.library.arithmetic.linear_pauli_rotations

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

# pylint: disable=no-member

"""Linearly-controlled X, Y or Z rotation."""

from typing import Optional

from qiskit.circuit import QuantumRegister
from qiskit.circuit.exceptions import CircuitError

from .functional_pauli_rotations import FunctionalPauliRotations


[docs]class LinearPauliRotations(FunctionalPauliRotations): r"""Linearly-controlled X, Y or Z rotation. For a register of state qubits :math:`|x\rangle`, a target qubit :math:`|0\rangle` and the basis ``'Y'`` this circuit acts as: .. parsed-literal:: q_0: ─────────────────────────■───────── ... ────────────────────── . q_(n-1): ─────────────────────────┼───────── ... ───────────■────────── ┌────────────┐ ┌───────┴───────┐ ┌─────────┴─────────┐ q_n: ─┤ RY(offset) ├──┤ RY(2^0 slope) ├ ... ┤ RY(2^(n-1) slope) ├ └────────────┘ └───────────────┘ └───────────────────┘ This can for example be used to approximate linear functions, with :math:`a/2 =` ``slope`` and :math:`b/2 =` ``offset`` and the basis ``'Y'``: .. math:: |x\rangle |0\rangle \mapsto \cos(ax + b)|x\rangle|0\rangle + \sin(ax + b)|x\rangle |1\rangle Since for small arguments :math:`\sin(x) \approx x` this operator can be used to approximate linear functions. """ def __init__(self, num_state_qubits: Optional[int] = None, slope: float = 1, offset: float = 0, basis: str = 'Y', name: str = 'LinRot') -> None: r"""Create a new linear rotation circuit. Args: num_state_qubits: The number of qubits representing the state :math:`|x\rangle`. slope: The slope of the controlled rotation. offset: The offset of the controlled rotation. basis: The type of Pauli rotation ('X', 'Y', 'Z'). name: The name of the circuit object. """ super().__init__(num_state_qubits=num_state_qubits, basis=basis, name=name) # define internal parameters self._slope = None self._offset = None # store parameters self.slope = slope self.offset = offset @property def slope(self) -> float: """The multiplicative factor in the rotation angle of the controlled rotations. The rotation angles are ``slope * 2^0``, ``slope * 2^1``, ... , ``slope * 2^(n-1)`` where ``n`` is the number of state qubits. Returns: The rotation angle common in all controlled rotations. """ return self._slope @slope.setter def slope(self, slope: float) -> None: """Set the multiplicative factor of the rotation angles. Args: The slope of the rotation angles. """ if self._slope is None or slope != self._slope: self._invalidate() self._slope = slope @property def offset(self) -> float: """The angle of the single qubit offset rotation on the target qubit. Before applying the controlled rotations, a single rotation of angle ``offset`` is applied to the target qubit. Returns: The offset angle. """ return self._offset @offset.setter def offset(self, offset: float) -> None: """Set the angle for the offset rotation on the target qubit. Args: offset: The offset rotation angle. """ if self._offset is None or offset != self._offset: self._invalidate() self._offset = offset def _reset_registers(self, num_state_qubits: Optional[int]) -> None: """Set the number of state qubits. Note that this changes the underlying quantum register, if the number of state qubits changes. Args: num_state_qubits: The new number of qubits. """ if num_state_qubits: # set new register of appropriate size qr_state = QuantumRegister(num_state_qubits, name='state') qr_target = QuantumRegister(1, name='target') self.qregs = [qr_state, qr_target] else: self.qregs = [] def _check_configuration(self, raise_on_failure: bool = True) -> bool: valid = True if self.num_state_qubits is None: valid = False if raise_on_failure: raise AttributeError('The number of qubits has not been set.') if self.num_qubits < self.num_state_qubits + 1: valid = False if raise_on_failure: raise CircuitError('Not enough qubits in the circuit, need at least ' '{}.'.format(self.num_state_qubits + 1)) return valid def _build(self): # check if we have to rebuild and if the configuration is valid super()._build() # build the circuit qr_state = self.qubits[:self.num_state_qubits] qr_target = self.qubits[self.num_state_qubits] if self.basis == 'x': self.rx(self.offset, qr_target) elif self.basis == 'y': self.ry(self.offset, qr_target) else: # 'Z': self.rz(self.offset, qr_target) for i, q_i in enumerate(qr_state): if self.basis == 'x': self.crx(self.slope * pow(2, i), q_i, qr_target) elif self.basis == 'y': self.cry(self.slope * pow(2, i), q_i, qr_target) else: # 'Z' self.crz(self.slope * pow(2, i), q_i, qr_target)